-
1
-
-
51349127170
-
High-yield production of graphene by liquid-phase exfoliation of graphite
-
Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 2008;3:563-8.
-
(2008)
Nat Nanotechnol
, vol.3
, pp. 563-568
-
-
Hernandez, Y.1
Nicolosi, V.2
Lotya, M.3
Blighe, F.M.4
Sun, Z.5
De, S.6
-
3
-
-
84869194037
-
Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications
-
Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 2012;112:6156-214.
-
(2012)
Chem Rev
, vol.112
, pp. 6156-6214
-
-
Georgakilas, V.1
Otyepka, M.2
Bourlinos, A.B.3
Chandra, V.4
Kim, N.5
Kemp, K.C.6
-
4
-
-
84871964643
-
Nano-graphene in biomedicine: Theranostic applications
-
Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 2013;42:530-47.
-
(2013)
Chem Soc Rev
, vol.42
, pp. 530-547
-
-
Yang, K.1
Feng, L.2
Shi, X.3
Liu, Z.4
-
5
-
-
84902687619
-
Functionalization of graphene grown on metal substrate with atomic oxygen: Enolate vs epoxide
-
Jung J, Lim H, Oh J, Kim Y. Functionalization of graphene grown on metal substrate with atomic oxygen: enolate vs epoxide. J Am Chem Soc 2014;136:8528-31.
-
(2014)
J Am Chem Soc
, vol.136
, pp. 8528-8531
-
-
Jung, J.1
Lim, H.2
Oh, J.3
Kim, Y.4
-
6
-
-
84892970486
-
Scalable enhancement of graphene oxide properties by thermally driven phase transformation
-
Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem 2014;6:151-8.
-
(2014)
Nat Chem
, vol.6
, pp. 151-158
-
-
Kumar, P.V.1
Bardhan, N.M.2
Tongay, S.3
Wu, J.4
Belcher, A.M.5
Grossman, J.C.6
-
7
-
-
84871786367
-
Probing the catalytic activity of porous graphene oxide and the origin of this behaviour
-
Su C, Acik M, Takai K, Lu J, Hao SJ, Zheng Y, et al. Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nat Commun 2012;3.
-
(2012)
Nat Commun
, pp. 3
-
-
Su, C.1
Acik, M.2
Takai, K.3
Lu, J.4
Hao, S.J.5
Zheng, Y.6
-
8
-
-
57349099336
-
Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation
-
Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 2008;20:4490-3.
-
(2008)
Adv Mater
, vol.20
, pp. 4490-4493
-
-
Fan, X.1
Peng, W.2
Li, Y.3
Li, X.4
Wang, S.5
Zhang, G.6
-
9
-
-
79953008694
-
The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets
-
Rourke JP, Pandey PA, Moore JJ, Bates M, Kinloch IA, Young RJ, et al. The real graphene oxide revealed: stripping the oxidative debris from the graphene-like sheets. Angew Chem Int Ed 2011;50:3173-7.
-
(2011)
Angew Chem Int Ed
, vol.50
, pp. 3173-3177
-
-
Rourke, J.P.1
Pandey, P.A.2
Moore, J.J.3
Bates, M.4
Kinloch, I.A.5
Young, R.J.6
-
10
-
-
84889079150
-
The role of oxidative debris on graphene oxide films
-
Lõpez-Díaz D, Velázquez MM, De La Torre SB, Pérez-Pisonero A, Trujillano R, Fierro JLG, et al. The role of oxidative debris on graphene oxide films. ChemPhysChem 2013;14:4002-9.
-
(2013)
ChemPhysChem
, vol.14
, pp. 4002-4009
-
-
Lõpez-Díaz, D.1
Velázquez, M.M.2
De La Torre, S.B.3
Pérez-Pisonero, A.4
Trujillano, R.5
Fierro, J.L.G.6
-
11
-
-
84869070355
-
Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles
-
Faria AF, Martinez DST, Moraes ACM, Maia Da Costa MEH, Barros EB, Souza FilhoAG, et al.Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles. Chem Mater 2012;24:4080-7.
-
(2012)
Chem Mater
, vol.24
, pp. 4080-4087
-
-
Faria, A.F.1
Martinez, D.S.T.2
Moraes, A.C.M.3
Maia Da Costa, M.E.H.4
Barros, E.B.5
Souza Filho, A.G.6
-
12
-
-
84872861294
-
Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model
-
Dimiev AM, Alemany LB, Tour JM. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano 2013;7:576-88.
-
(2013)
ACS Nano
, vol.7
, pp. 576-588
-
-
Dimiev, A.M.1
Alemany, L.B.2
Tour, J.M.3
-
13
-
-
84908689183
-
Optimization of proton conductivity in graphene oxide by filling sulfate ions
-
Hatakeyama K, Razaul Karim M, Ogata C, Tateishi H, Taniguchi T, Koinuma M, et al. Optimization of proton conductivity in graphene oxide by filling sulfate ions. Chem Commun 2014;50:14527-30.
-
(2014)
Chem Commun
, vol.50
, pp. 14527-14530
-
-
Hatakeyama, K.1
Razaul Karim, M.2
Ogata, C.3
Tateishi, H.4
Taniguchi, T.5
Koinuma, M.6
-
14
-
-
84903150608
-
Proton conductivities of graphene oxide nanosheets: Single, multilayer, and modified nanosheets
-
Hatakeyama K, Karim MR, Ogata C, Tateishi H, Funatsu A, Taniguchi T, et al. Proton conductivities of graphene oxide nanosheets: single, multilayer, and modified nanosheets. Angew Chem Int Ed 2014;53:6997-7000.
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 6997-7000
-
-
Hatakeyama, K.1
Karim, M.R.2
Ogata, C.3
Tateishi, H.4
Funatsu, A.5
Taniguchi, T.6
-
15
-
-
84892569550
-
Metal permeation into multi-layered graphene oxide
-
Ogata C, Koinuma M, Hatakeyama K, Tateishi H, Asrori MZ, Taniguchi T, et al. Metal permeation into multi-layered graphene oxide. Sci Rep 2014;4:3647.
-
(2014)
Sci Rep
, vol.4
, pp. 3647
-
-
Ogata, C.1
Koinuma, M.2
Hatakeyama, K.3
Tateishi, H.4
Asrori, M.Z.5
Taniguchi, T.6
-
16
-
-
84901755734
-
Effect of the electrochemical oxidation/reduction cycle on the electrochemical capacitance of graphite oxide
-
Tateishi H, Koinuma M, Miyamoto S, Kamei Y, Hatakeyama K, Ogata C, et al. Effect of the electrochemical oxidation/reduction cycle on the electrochemical capacitance of graphite oxide. Carbon 2014;76:40-5.
-
(2014)
Carbon
, vol.76
, pp. 40-45
-
-
Tateishi, H.1
Koinuma, M.2
Miyamoto, S.3
Kamei, Y.4
Hatakeyama, K.5
Ogata, C.6
-
17
-
-
34249742469
-
Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
-
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007;45:1558-65.
-
(2007)
Carbon
, vol.45
, pp. 1558-1565
-
-
Stankovich, S.1
Dikin, D.A.2
Piner, R.D.3
Kohlhaas, K.A.4
Kleinhammes, A.5
Jia, Y.6
-
18
-
-
79151472209
-
Simple photoreduction of graphene oxide nanosheet under mild conditions
-
Matsumoto Y, Koinuma M, Kim SY, Watanabe Y, Taniguchi T, Hatakeyama K, et al. Simple photoreduction of graphene oxide nanosheet under mild conditions. ACS Appl Mater Interfaces 2010;2:3461-6.
-
(2010)
ACS Appl Mater Interfaces
, vol.2
, pp. 3461-3466
-
-
Matsumoto, Y.1
Koinuma, M.2
Kim, S.Y.3
Watanabe, Y.4
Taniguchi, T.5
Hatakeyama, K.6
-
19
-
-
77649134936
-
Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets
-
Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, et al. Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 2010;4:1227-33.
-
(2010)
ACS Nano
, vol.4
, pp. 1227-1233
-
-
Zhu, Y.1
Stoller, M.D.2
Cai, W.3
Velamakanni, A.4
Piner, R.D.5
Chen, D.6
-
20
-
-
77956920682
-
Selfpropagating domino-like reactions in oxidized graphite
-
Kim F, Luo J, Cruz-Silva R, Cote LJ, Sohn K, Huang J. Selfpropagating domino-like reactions in oxidized graphite. Adv Funct Mater 2010;20:2867-73.
-
(2010)
Adv Funct Mater
, vol.20
, pp. 2867-2873
-
-
Kim, F.1
Luo, J.2
Cruz-Silva, R.3
Cote, L.J.4
Sohn, K.5
Huang, J.6
-
21
-
-
33646169643
-
General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy
-
Canado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, et al. General equation for the determination of the crystallite size la of nanographite by Raman spectroscopy. Appl Phys Lett 2006;88:0252.
-
(2006)
Appl Phys Lett
, vol.88
, pp. 0252
-
-
Canado, L.G.1
Takai, K.2
Enoki, T.3
Endo, M.4
Kim, Y.A.5
Mizusaki, H.6
-
22
-
-
59149103208
-
Reversible basal plane hydrogenation of graphene
-
Ryu S, Han MY, Maultzsch J, Heinz TF, Kim P, Steigerwald ML, et al. Reversible basal plane hydrogenation of graphene. Nano Lett 2008;8:4597-602.
-
(2008)
Nano Lett
, vol.8
, pp. 4597-4602
-
-
Ryu, S.1
Han, M.Y.2
Maultzsch, J.3
Heinz, T.F.4
Kim, P.5
Steigerwald, M.L.6
-
23
-
-
69149105000
-
Epoxide reduction with hydrazine on graphene: A first principles study
-
Kim MC, Hwang GS, Ruoff RS. Epoxide reduction with hydrazine on graphene: a first principles study. J Chem Phys 2009;131:25.
-
(2009)
J Chem Phys
, vol.131
, pp. 25
-
-
Kim, M.C.1
Hwang, G.S.2
Ruoff, R.S.3
-
24
-
-
84904470883
-
Sulfur-functionalized graphene oxide by epoxide ringopening
-
Thomas HR, Marsden AJ, Walker M, Wilson NR, Rourke JP. Sulfur-functionalized graphene oxide by epoxide ringopening. Angew Chem Int Ed 2014;53:7613-8.
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 7613-7618
-
-
Thomas, H.R.1
Marsden, A.J.2
Walker, M.3
Wilson, N.R.4
Rourke, J.P.5
-
25
-
-
52949123603
-
Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide
-
Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008;321:1815-7.
-
(2008)
Science
, vol.321
, pp. 1815-1817
-
-
Cai, W.1
Piner, R.D.2
Stadermann, F.J.3
Park, S.4
Shaibat, M.A.5
Ishii, Y.6
-
26
-
-
78049331373
-
The role of intercalated water in multilayered graphene oxide
-
Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, et al. The role of intercalated water in multilayered graphene oxide. ACS Nano 2010;4:5861-8.
-
(2010)
ACS Nano
, vol.4
, pp. 5861-5868
-
-
Acik, M.1
Mattevi, C.2
Gong, C.3
Lee, G.4
Cho, K.5
Chhowalla, M.6
-
28
-
-
0006360872
-
Kinetics and mechanism of vic-diol dehydration. II. P-Anisyl group in pinacolic rearrangement
-
Pocker Y, Ronald BP. Kinetics and mechanism of vic-diol dehydration. II. p-Anisyl group in pinacolic rearrangement. J Org Chem 1970;35:3362-7.
-
(1970)
J Org Chem
, vol.35
, pp. 3362-3367
-
-
Pocker, Y.1
Ronald, B.P.2
-
29
-
-
77955148953
-
Reaction pathway of aliphatic pinacoltype rearrangement reexamined
-
Itoh S, Yamataka H. Reaction pathway of aliphatic pinacoltype rearrangement reexamined. J Phys Org Chem 2010;23:789-95.
-
(2010)
J Phys Org Chem
, vol.23
, pp. 789-795
-
-
Itoh, S.1
Yamataka, H.2
-
30
-
-
84878653042
-
Graphene oxide nanosheet with high proton conductivity
-
Karim MR, Hatakeyama K, Matsui T, Takehira H, Taniguchi T, Koinuma M, et al. Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc 2013;135:8097-100.
-
(2013)
J Am Chem Soc
, vol.135
, pp. 8097-8100
-
-
Karim, M.R.1
Hatakeyama, K.2
Matsui, T.3
Takehira, H.4
Taniguchi, T.5
Koinuma, M.6
-
31
-
-
84897382610
-
Ozonated graphene oxide film as a proton-exchange membrane
-
Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, et al. Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 2014;53:3588-93.
-
(2014)
Angew Chem Int Ed
, vol.53
, pp. 3588-3593
-
-
Gao, W.1
Wu, G.2
Janicke, M.T.3
Cullen, D.A.4
Mukundan, R.5
Baldwin, J.K.6
-
32
-
-
75449104301
-
Hydrazine and thermal reduction of graphene oxide: Reaction mechanisms, product structures, and reaction design
-
Gao X, Jang J, Nagase S. Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 2009;114:832-42.
-
(2009)
J Phys Chem C
, vol.114
, pp. 832-842
-
-
Gao, X.1
Jang, J.2
Nagase, S.3
-
33
-
-
84863855833
-
Dual fluorescence of graphene oxide: A time-resolved study
-
Zhang XF, Shao X, Liu S. Dual fluorescence of graphene oxide: a time-resolved study. J Phys Chem A 2012;116:7308-13.
-
(2012)
J Phys Chem A
, vol.116
, pp. 7308-7313
-
-
Zhang, X.F.1
Shao, X.2
Liu, S.3
-
34
-
-
84869178641
-
The origin of fluorescence from graphene oxide
-
Shang J, Ma L, Li J, Ai W, Yu T, Gurzadyan GG. The origin of fluorescence from graphene oxide. Sci Rep 2012;2.
-
(2012)
Sci Rep
, pp. 2
-
-
Shang, J.1
Ma, L.2
Li, J.3
Ai, W.4
Yu, T.5
Gurzadyan, G.G.6
-
35
-
-
77952393087
-
Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles
-
Pan D, Zhang J, Li Z, Wu C, Yan X, Wu M. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem Commun 2010;46:3681-3.
-
(2010)
Chem Commun
, vol.46
, pp. 3681-3683
-
-
Pan, D.1
Zhang, J.2
Li, Z.3
Wu, C.4
Yan, X.5
Wu, M.6
-
36
-
-
76649134436
-
Blue photoluminescence from chemically derived graphene oxide
-
Eda G, Lin YY, Mattevi C, Yamaguchi H, Chen HA, Chen IS, et al. Blue photoluminescence from chemically derived graphene oxide. Adv Mater 2010;22:505-9.
-
(2010)
Adv Mater
, vol.22
, pp. 505-509
-
-
Eda, G.1
Lin, Y.Y.2
Mattevi, C.3
Yamaguchi, H.4
Chen, H.A.5
Chen, I.S.6
-
37
-
-
84894634154
-
Exciton characteristics in graphene epoxide
-
Zhu X, Su H. Exciton characteristics in graphene epoxide. ACS Nano 2014;8:1284-9.
-
(2014)
ACS Nano
, vol.8
, pp. 1284-1289
-
-
Zhu, X.1
Su, H.2
|