메뉴 건너뛰기




Volumn 149, Issue Part A, 2015, Pages 187-197

Binary/ternary extreme learning machines

Author keywords

Binary features; Extreme learning machine; Hidden layer initialization; Intrinsic plasticity; Random projection; Ternary features

Indexed keywords

KNOWLEDGE ACQUISITION;

EID: 84922032836     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.01.072     Document Type: Article
Times cited : (34)

References (25)
  • 1
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks
    • in: Proceedings of the International Joint Conference on Neural Networks
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2, 2004, pp. 985-990. doi:10.1109/IJCNN.2004.1380068.
    • (2004) , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 2
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501. 10.1016/j.neucom.2005.12.126.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 4
    • 78651426442 scopus 로고    scopus 로고
    • Interpreting extreme learning machine as an approximation to an infinite neural network
    • in: KDIR 2010-Proceedings of the International Conference on Knowledge Discovery and Information Retrieval
    • E. Parviainen, J. Riihimäki, Y. Miche, A. Lendasse, Interpreting extreme learning machine as an approximation to an infinite neural network, in: KDIR 2010-Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, 2010, pp. 65-73.
    • (2010) , pp. 65-73
    • Parviainen, E.1    Riihimäki, J.2    Miche, Y.3    Lendasse, A.4
  • 5
    • 79959368289 scopus 로고    scopus 로고
    • Batch intrinsic plasticity for extreme learning machines
    • in: Artificial Neural Networks and Machine Learning-ICANN 2011, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • K. Neumann, J.J. Steil, Batch intrinsic plasticity for extreme learning machines, in: Artificial Neural Networks and Machine Learning-ICANN 2011, vol. 6791, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 339-346. http://dx.doi.org/10.1007/978-3-642-21735-7_42.
    • (2011) , vol.6791 , pp. 339-346
    • Neumann, K.1    Steil, J.J.2
  • 6
    • 84877599549 scopus 로고    scopus 로고
    • Regularization by intrinsic plasticity and its synergies with recurrence for random projection methods
    • Neumann K., Emmerich C., Steil J.J. Regularization by intrinsic plasticity and its synergies with recurrence for random projection methods. J. Intell. Learn. Syst. Appl. 2012, 4(3):230-246.
    • (2012) J. Intell. Learn. Syst. Appl. , vol.4 , Issue.3 , pp. 230-246
    • Neumann, K.1    Emmerich, C.2    Steil, J.J.3
  • 7
    • 84870236270 scopus 로고    scopus 로고
    • Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity
    • Neumann K., Steil J.J. Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 2013, 102:555-560. 〈http://dx.doi.org/10.1016/j.neucom.2012.01.041.
    • (2013) Neurocomputing , vol.102 , pp. 555-560
    • Neumann, K.1    Steil, J.J.2
  • 8
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
    • Steil J.J. Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Netw.: Off. J. Int. Neural Netw, Soc. 2007, 20(3):353-364.
    • (2007) Neural Netw.: Off. J. Int. Neural Netw, Soc. , vol.20 , Issue.3 , pp. 353-364
    • Steil, J.J.1
  • 9
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536. 10.1109/18.661502.
    • (1998) IEEE Trans. Inf. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 10
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062. 10.1016/j.neucom.2007.10.008.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20(8):1352-1357. 10.1109/TNN.2009.2024147.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 12
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892. 10.1109/TNN.2006.875977.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 13
    • 84893409634 scopus 로고    scopus 로고
    • Deep learning made easier by linear transformations in perceptrons
    • in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics
    • T. Raiko, H. Valpola, Deep learning made easier by linear transformations in perceptrons, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 924-932.
    • (2012) , pp. 924-932
    • Raiko, T.1    Valpola, H.2
  • 14
    • 80051671932 scopus 로고    scopus 로고
    • TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization
    • Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421. 10.1016/j.neucom.2010.12.042.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2413-2421
    • Miche, Y.1    van Heeswijk, M.2    Bas, P.3    Simula, O.4    Lendasse, A.5
  • 15
    • 33846516584 scopus 로고    scopus 로고
    • Springer,
    • Bishop C.M. Pattern Recognition and Machine Learning 2006, Springer, http://www.springer.com/computer/image+processing/book/978-0-387-31073-2, http://books.google.fi/books?id=kTNoQgAACAAJ.
    • (2006) Pattern Recognition and Machine Learning
    • Bishop, C.M.1
  • 17
    • 80051584618 scopus 로고    scopus 로고
    • GPU-accelerated and parallelized ELM ensembles for large-scale regression
    • van Heeswijk M., Miche Y., Oja E., Lendasse A. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 2011, 74(16):2430-2437. 10.1016/j.neucom.2010.11.034.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2430-2437
    • van Heeswijk, M.1    Miche, Y.2    Oja, E.3    Lendasse, A.4
  • 18
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine
    • in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE
    • W.-Y. Deng, Q.-H. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE, 2009, pp. 389-395. doi:10.1109/CIDM.2009.4938676.
    • (2009) , pp. 389-395
    • Deng, W.-Y.1    Zheng, Q.-H.2    Chen, L.3
  • 19
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder J., Mead R. A simplex method for function minimization. Comput. J. 1965, 7(4):308-313.
    • (1965) Comput. J. , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.1    Mead, R.2
  • 20
    • 0032251894 scopus 로고    scopus 로고
    • Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
    • J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions (1998). doi:10.1137/S1052623496303470.
    • (1998)
    • Lagarias, J.C.1    Reeds, J.A.2    Wright, M.H.3    Wright, P.E.4
  • 21
    • 33646185004 scopus 로고    scopus 로고
    • A gradient rule for the plasticity of a neuron's intrinsic excitability
    • Springer, Berlin/Heidelberg
    • Triesch J. A gradient rule for the plasticity of a neuron's intrinsic excitability. Artificial Neural Networks: Biological Inspirations-ICANN 2005 2005, vol. 3696:65-70. Springer, Berlin/Heidelberg. 10.1007/11550822_11.
    • (2005) Artificial Neural Networks: Biological Inspirations-ICANN 2005 , vol.3696 , pp. 65-70
    • Triesch, J.1
  • 22
    • 33646165467 scopus 로고    scopus 로고
    • Synergies between intrinsic and synaptic plasticity in individual model neurons
    • MIT Press
    • Triesch J. Synergies between intrinsic and synaptic plasticity in individual model neurons. Advances in Neural Information Processing Systems 2005, vol. 17:1417-1424. MIT Press. 10.1162/neco.2007.19.4.885.
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1417-1424
    • Triesch, J.1
  • 23
    • 34249815487 scopus 로고    scopus 로고
    • An experimental unification of reservoir computing methods
    • Verstraeten D., Schrauwen B., D'Haene M., Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20(3):391-403.
    • (2007) Neural Netw. , vol.20 , Issue.3 , pp. 391-403
    • Verstraeten, D.1    Schrauwen, B.2    D'Haene, M.3    Stroobandt, D.4
  • 24
    • 84947730351 scopus 로고    scopus 로고
    • Intrinsic plasticity via natural gradient descent
    • in: ESANN 2012: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
    • K. Neumann, J.J. Steil, Intrinsic plasticity via natural gradient descent, in: ESANN 2012: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2012, pp. 555-560.
    • (2012) , pp. 555-560
    • Neumann, K.1    Steil, J.J.2
  • 25
    • 36948999941 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, 2007.
    • (2007)
    • Asuncion, A.1    Newman, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.