-
1
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
in: Proceedings of the International Joint Conference on Neural Networks
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks, vol. 2, 2004, pp. 985-990. doi:10.1109/IJCNN.2004.1380068.
-
(2004)
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
2
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501. 10.1016/j.neucom.2005.12.126.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
3
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM: optimally pruned extreme learning machine. IEEE Trans. Neural Netw. 2010, 21(1):158-162.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
4
-
-
78651426442
-
Interpreting extreme learning machine as an approximation to an infinite neural network
-
in: KDIR 2010-Proceedings of the International Conference on Knowledge Discovery and Information Retrieval
-
E. Parviainen, J. Riihimäki, Y. Miche, A. Lendasse, Interpreting extreme learning machine as an approximation to an infinite neural network, in: KDIR 2010-Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, 2010, pp. 65-73.
-
(2010)
, pp. 65-73
-
-
Parviainen, E.1
Riihimäki, J.2
Miche, Y.3
Lendasse, A.4
-
5
-
-
79959368289
-
Batch intrinsic plasticity for extreme learning machines
-
in: Artificial Neural Networks and Machine Learning-ICANN 2011, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
K. Neumann, J.J. Steil, Batch intrinsic plasticity for extreme learning machines, in: Artificial Neural Networks and Machine Learning-ICANN 2011, vol. 6791, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2011, pp. 339-346. http://dx.doi.org/10.1007/978-3-642-21735-7_42.
-
(2011)
, vol.6791
, pp. 339-346
-
-
Neumann, K.1
Steil, J.J.2
-
6
-
-
84877599549
-
Regularization by intrinsic plasticity and its synergies with recurrence for random projection methods
-
Neumann K., Emmerich C., Steil J.J. Regularization by intrinsic plasticity and its synergies with recurrence for random projection methods. J. Intell. Learn. Syst. Appl. 2012, 4(3):230-246.
-
(2012)
J. Intell. Learn. Syst. Appl.
, vol.4
, Issue.3
, pp. 230-246
-
-
Neumann, K.1
Emmerich, C.2
Steil, J.J.3
-
7
-
-
84870236270
-
Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity
-
Neumann K., Steil J.J. Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity. Neurocomputing 2013, 102:555-560. 〈http://dx.doi.org/10.1016/j.neucom.2012.01.041.
-
(2013)
Neurocomputing
, vol.102
, pp. 555-560
-
-
Neumann, K.1
Steil, J.J.2
-
8
-
-
34249811184
-
Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning
-
Steil J.J. Online reservoir adaptation by intrinsic plasticity for backpropagation-decorrelation and echo state learning. Neural Netw.: Off. J. Int. Neural Netw, Soc. 2007, 20(3):353-364.
-
(2007)
Neural Netw.: Off. J. Int. Neural Netw, Soc.
, vol.20
, Issue.3
, pp. 353-364
-
-
Steil, J.J.1
-
9
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
-
Bartlett P.L. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans. Inf. Theory 1998, 44(2):525-536. 10.1109/18.661502.
-
(1998)
IEEE Trans. Inf. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
10
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062. 10.1016/j.neucom.2007.10.008.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
11
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Trans. Neural Netw. 2009, 20(8):1352-1357. 10.1109/TNN.2009.2024147.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.8
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.-B.2
Lin, Q.3
Gay, R.4
-
12
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892. 10.1109/TNN.2006.875977.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
13
-
-
84893409634
-
Deep learning made easier by linear transformations in perceptrons
-
in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics
-
T. Raiko, H. Valpola, Deep learning made easier by linear transformations in perceptrons, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 924-932.
-
(2012)
, pp. 924-932
-
-
Raiko, T.1
Valpola, H.2
-
14
-
-
80051671932
-
TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization
-
Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421. 10.1016/j.neucom.2010.12.042.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2413-2421
-
-
Miche, Y.1
van Heeswijk, M.2
Bas, P.3
Simula, O.4
Lendasse, A.5
-
15
-
-
33846516584
-
-
Springer,
-
Bishop C.M. Pattern Recognition and Machine Learning 2006, Springer, http://www.springer.com/computer/image+processing/book/978-0-387-31073-2, http://books.google.fi/books?id=kTNoQgAACAAJ.
-
(2006)
Pattern Recognition and Machine Learning
-
-
Bishop, C.M.1
-
17
-
-
80051584618
-
GPU-accelerated and parallelized ELM ensembles for large-scale regression
-
van Heeswijk M., Miche Y., Oja E., Lendasse A. GPU-accelerated and parallelized ELM ensembles for large-scale regression. Neurocomputing 2011, 74(16):2430-2437. 10.1016/j.neucom.2010.11.034.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2430-2437
-
-
van Heeswijk, M.1
Miche, Y.2
Oja, E.3
Lendasse, A.4
-
18
-
-
67650463106
-
Regularized extreme learning machine
-
in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE
-
W.-Y. Deng, Q.-H. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE, 2009, pp. 389-395. doi:10.1109/CIDM.2009.4938676.
-
(2009)
, pp. 389-395
-
-
Deng, W.-Y.1
Zheng, Q.-H.2
Chen, L.3
-
19
-
-
0000238336
-
A simplex method for function minimization
-
Nelder J., Mead R. A simplex method for function minimization. Comput. J. 1965, 7(4):308-313.
-
(1965)
Comput. J.
, vol.7
, Issue.4
, pp. 308-313
-
-
Nelder, J.1
Mead, R.2
-
20
-
-
0032251894
-
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
-
J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions (1998). doi:10.1137/S1052623496303470.
-
(1998)
-
-
Lagarias, J.C.1
Reeds, J.A.2
Wright, M.H.3
Wright, P.E.4
-
21
-
-
33646185004
-
A gradient rule for the plasticity of a neuron's intrinsic excitability
-
Springer, Berlin/Heidelberg
-
Triesch J. A gradient rule for the plasticity of a neuron's intrinsic excitability. Artificial Neural Networks: Biological Inspirations-ICANN 2005 2005, vol. 3696:65-70. Springer, Berlin/Heidelberg. 10.1007/11550822_11.
-
(2005)
Artificial Neural Networks: Biological Inspirations-ICANN 2005
, vol.3696
, pp. 65-70
-
-
Triesch, J.1
-
22
-
-
33646165467
-
Synergies between intrinsic and synaptic plasticity in individual model neurons
-
MIT Press
-
Triesch J. Synergies between intrinsic and synaptic plasticity in individual model neurons. Advances in Neural Information Processing Systems 2005, vol. 17:1417-1424. MIT Press. 10.1162/neco.2007.19.4.885.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1417-1424
-
-
Triesch, J.1
-
23
-
-
34249815487
-
An experimental unification of reservoir computing methods
-
Verstraeten D., Schrauwen B., D'Haene M., Stroobandt D. An experimental unification of reservoir computing methods. Neural Netw. 2007, 20(3):391-403.
-
(2007)
Neural Netw.
, vol.20
, Issue.3
, pp. 391-403
-
-
Verstraeten, D.1
Schrauwen, B.2
D'Haene, M.3
Stroobandt, D.4
-
24
-
-
84947730351
-
Intrinsic plasticity via natural gradient descent
-
in: ESANN 2012: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
-
K. Neumann, J.J. Steil, Intrinsic plasticity via natural gradient descent, in: ESANN 2012: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2012, pp. 555-560.
-
(2012)
, pp. 555-560
-
-
Neumann, K.1
Steil, J.J.2
-
25
-
-
36948999941
-
UCI Machine Learning Repository
-
A. Asuncion, D.J. Newman, UCI Machine Learning Repository, 2007.
-
(2007)
-
-
Asuncion, A.1
Newman, D.J.2
|