메뉴 건너뛰기




Volumn 102, Issue , 2013, Pages 23-30

Optimizing extreme learning machines via ridge regression and batch intrinsic plasticity

Author keywords

Batch intrinsic plasticity; Extreme learning machine; Learning; Neural network; Regularization; Ridge regression

Indexed keywords

EXTREME LEARNING MACHINE; INTRINSIC PLASTICITY; LEARNING; REGULARIZATION; RIDGE REGRESSION;

EID: 84870236270     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.01.041     Document Type: Article
Times cited : (42)

References (26)
  • 3
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Pao Y.-H., Park G.-H., Sobajic D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 1994, 6(2):163-180.
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.-H.1    Park, G.-H.2    Sobajic, D.J.3
  • 4
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D.S., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 5
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G.-B., Li M.-B., Chen L., Siew C.-K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71:576-583.
    • (2008) Neurocomputing , vol.71 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 6
    • 49649084441 scopus 로고    scopus 로고
    • Comments on the extreme learning machine
    • Wang L., Wan C. Comments on the extreme learning machine. IEEE Trans. Neural Networks 2008, 19(8):1494-1495.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.8 , pp. 1494-1495
    • Wang, L.1    Wan, C.2
  • 7
    • 49649105493 scopus 로고    scopus 로고
    • Reply to comments on the extreme learning machine
    • Huang G.-B. Reply to comments on the extreme learning machine. IEEE Trans. Neural Networks 2008, 19(8):1495-1496.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.8 , pp. 1495-1496
    • Huang, G.-B.1
  • 8
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 9
    • 84859007933 scopus 로고    scopus 로고
    • Extreme learning machine for regression and multiclass classification
    • Man Cybernetics B 42
    • Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang, Extreme learning machine for regression and multiclass classification, IEEE Trans. Sys. Man Cybernetics B 42 (2) (2012) 513-529.
    • (2012) IEEE Trans. Sys. , vol.2 , pp. 513-529
    • Huang, G.B.1    Zhou H.Ding X.Zhang, R.2
  • 11
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 12
    • 58849132454 scopus 로고    scopus 로고
    • OP-ELM: theory, experiments and a toolbox, in: Artificial Neural Networks-ICANN 2008, vol. 5163
    • Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a toolbox, in: Artificial Neural Networks-ICANN 2008, vol. 5163, 2008, pp. 145-154.
    • (2008) , pp. 145-154
    • Miche, Y.1    Sorjamaa, A.2    Lendasse, A.3
  • 13
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Trans. Neural Networks 2009, 20:1352-1357.
    • (2009) Trans. Neural Networks , vol.20 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 14
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining
    • W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 389-395.
    • (2009) , pp. 389-395
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 15
    • 80051671932 scopus 로고    scopus 로고
    • Trop-elm: a double-regularized elm using lars and tikhonov regularization
    • Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. Trop-elm: a double-regularized elm using lars and tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2413-2421
    • Miche, Y.1    van Heeswijk, M.2    Bas, P.3    Simula, O.4    Lendasse, A.5
  • 18
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • Bishop C.M. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 7(1):108-116.
    • (1995) Neural Comput. , vol.7 , Issue.1 , pp. 108-116
    • Bishop, C.M.1
  • 19
    • 33646185004 scopus 로고    scopus 로고
    • A gradient rule for the plasticity of a neuron's intrinsic excitability, in: Proceedings of the ICANN
    • J. Triesch, A gradient rule for the plasticity of a neuron's intrinsic excitability, in: Proceedings of the ICANN, 2005, pp. 65-79.
    • (2005) , pp. 65-79
    • Triesch, J.1
  • 20
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagation decorrelation and echo state learning, Neural Networks, Special Issue on Echo State and Liquid State Networks
    • J.J. Steil, Online reservoir adaptation by intrinsic plasticity for backpropagation decorrelation and echo state learning, Neural Networks, Special Issue on Echo State and Liquid State Networks, 2007, pp. 353-364.
    • (2007) , pp. 353-364
    • Steil, J.J.1
  • 22
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., Leibler A. On information and sufficiency. Ann. Math. Statist. 1951, 22(1):79-86.
    • (1951) Ann. Math. Statist. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, A.2
  • 24
    • 84870246570 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Frank, A. Asuncion, UCI machine learning repository, 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 25
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 26
    • 33646165467 scopus 로고    scopus 로고
    • Synergies beween intrinsic and synaptic plasticity in individual model neurons, in: NIPS,
    • J. Triesch, Synergies beween intrinsic and synaptic plasticity in individual model neurons, in: NIPS, 2005.
    • (2005)
    • Triesch, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.