-
1
-
-
10944272650
-
Extreme learning machine: a new learning scheme of feedforward neural networks
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings, IEEE International Joint Conference on Neural Networks, vol. 2, 2004, pp. 985-990.
-
(2004)
In: Proceedings, IEEE International Joint Conference on Neural Networks
, vol.2
, pp. 985-990
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
3
-
-
0028420218
-
Learning and generalization characteristics of the random vector functional-link net
-
Pao Y.-H., Park G.-H., Sobajic D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 1994, 6(2):163-180.
-
(1994)
Neurocomputing
, vol.6
, Issue.2
, pp. 163-180
-
-
Pao, Y.-H.1
Park, G.-H.2
Sobajic, D.J.3
-
4
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
Broomhead D.S., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
-
(1988)
Complex Syst.
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
5
-
-
38649131505
-
Incremental extreme learning machine with fully complex hidden nodes
-
Huang G.-B., Li M.-B., Chen L., Siew C.-K. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71:576-583.
-
(2008)
Neurocomputing
, vol.71
, pp. 576-583
-
-
Huang, G.-B.1
Li, M.-B.2
Chen, L.3
Siew, C.-K.4
-
6
-
-
49649084441
-
Comments on the extreme learning machine
-
Wang L., Wan C. Comments on the extreme learning machine. IEEE Trans. Neural Networks 2008, 19(8):1494-1495.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.8
, pp. 1494-1495
-
-
Wang, L.1
Wan, C.2
-
7
-
-
49649105493
-
Reply to comments on the extreme learning machine
-
Huang G.-B. Reply to comments on the extreme learning machine. IEEE Trans. Neural Networks 2008, 19(8):1495-1496.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.8
, pp. 1495-1496
-
-
Huang, G.-B.1
-
8
-
-
33745903481
-
Extreme learning machine. theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
9
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Man Cybernetics B 42
-
Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang, Extreme learning machine for regression and multiclass classification, IEEE Trans. Sys. Man Cybernetics B 42 (2) (2012) 513-529.
-
(2012)
IEEE Trans. Sys.
, vol.2
, pp. 513-529
-
-
Huang, G.B.1
Zhou H.Ding X.Zhang, R.2
-
10
-
-
0003450542
-
-
Springer-Verlag New York, Inc., New York, NY, USA
-
Vapnik V.N. The Nature of Statistical Learning Theory 1995, Springer-Verlag New York, Inc., New York, NY, USA.
-
(1995)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
-
11
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
12
-
-
58849132454
-
-
OP-ELM: theory, experiments and a toolbox, in: Artificial Neural Networks-ICANN 2008, vol. 5163
-
Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a toolbox, in: Artificial Neural Networks-ICANN 2008, vol. 5163, 2008, pp. 145-154.
-
(2008)
, pp. 145-154
-
-
Miche, Y.1
Sorjamaa, A.2
Lendasse, A.3
-
13
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. Trans. Neural Networks 2009, 20:1352-1357.
-
(2009)
Trans. Neural Networks
, vol.20
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.-B.2
Lin, Q.3
Gay, R.4
-
14
-
-
67650463106
-
-
Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining
-
W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, 2009, pp. 389-395.
-
(2009)
, pp. 389-395
-
-
Deng, W.1
Zheng, Q.2
Chen, L.3
-
15
-
-
80051671932
-
Trop-elm: a double-regularized elm using lars and tikhonov regularization
-
Miche Y., van Heeswijk M., Bas P., Simula O., Lendasse A. Trop-elm: a double-regularized elm using lars and tikhonov regularization. Neurocomputing 2011, 74(16):2413-2421.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2413-2421
-
-
Miche, Y.1
van Heeswijk, M.2
Bas, P.3
Simula, O.4
Lendasse, A.5
-
17
-
-
84867675812
-
-
Pruning and regularisation in reservoir computing: a first insight, in: ESANN
-
X. Dutoit, B. Schrauwen, J.M.V. Campenhout, D. Stroobandt, H.V. Brussel, M. Nuttin, Pruning and regularisation in reservoir computing: a first insight, in: ESANN, 2008, pp. 1-6.
-
(2008)
, pp. 1-6
-
-
Dutoit, X.1
Schrauwen, B.2
Campenhout, J.M.V.3
Stroobandt, D.4
Brussel, H.V.5
Nuttin, M.6
-
18
-
-
0001740650
-
Training with noise is equivalent to Tikhonov regularization
-
Bishop C.M. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 1995, 7(1):108-116.
-
(1995)
Neural Comput.
, vol.7
, Issue.1
, pp. 108-116
-
-
Bishop, C.M.1
-
19
-
-
33646185004
-
-
A gradient rule for the plasticity of a neuron's intrinsic excitability, in: Proceedings of the ICANN
-
J. Triesch, A gradient rule for the plasticity of a neuron's intrinsic excitability, in: Proceedings of the ICANN, 2005, pp. 65-79.
-
(2005)
, pp. 65-79
-
-
Triesch, J.1
-
20
-
-
34249811184
-
-
Online reservoir adaptation by intrinsic plasticity for backpropagation decorrelation and echo state learning, Neural Networks, Special Issue on Echo State and Liquid State Networks
-
J.J. Steil, Online reservoir adaptation by intrinsic plasticity for backpropagation decorrelation and echo state learning, Neural Networks, Special Issue on Echo State and Liquid State Networks, 2007, pp. 353-364.
-
(2007)
, pp. 353-364
-
-
Steil, J.J.1
-
21
-
-
79959368289
-
Batch intrinsic plasticity for extreme learning machines
-
K. Neumann, J.J. Steil, Batch intrinsic plasticity for extreme learning machines, in: Proceedings, International Conference on Artificial Neural Networks, 2011, pp. 339-346.
-
(2011)
in: Proceedings, International Conference on Artificial Neural Networks
, pp. 339-346
-
-
Neumann, K.1
Steil, J.J.2
-
22
-
-
0001927585
-
On information and sufficiency
-
Kullback S., Leibler A. On information and sufficiency. Ann. Math. Statist. 1951, 22(1):79-86.
-
(1951)
Ann. Math. Statist.
, vol.22
, Issue.1
, pp. 79-86
-
-
Kullback, S.1
Leibler, A.2
-
24
-
-
84870246570
-
-
UCI machine learning repository
-
A. Frank, A. Asuncion, UCI machine learning repository, 2010.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
25
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
26
-
-
33646165467
-
-
Synergies beween intrinsic and synaptic plasticity in individual model neurons, in: NIPS,
-
J. Triesch, Synergies beween intrinsic and synaptic plasticity in individual model neurons, in: NIPS, 2005.
-
(2005)
-
-
Triesch, J.1
|