메뉴 건너뛰기




Volumn 584, Issue , 2015, Pages 11-28

All relevant feature selection methods and applications

Author keywords

All relevant feature selection; Boruta; Feature importance; Random forest; Strong and weak relevance

Indexed keywords


EID: 84921754924     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-662-45620-0_2     Document Type: Article
Times cited : (76)

References (17)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 3
    • 74049086087 scopus 로고    scopus 로고
    • Monte Carlo feature selection and interdependency discovery in supervised classification
    • In: Koronacki, J. (ed.), Springer
    • Draminski, M., Kierczak, M., Koronacki, J., Komorowski, J.: Monte Carlo feature selection and interdependency discovery in supervised classification. In: Koronacki, J. (ed.) Advances in Machine Learning II. SCI, vol. 263, pp. 371–385. Springer (2010)
    • (2010) Advances in Machine Learning II. SCI , vol.263 , pp. 371-385
    • Draminski, M.1    Kierczak, M.2    Koronacki, J.3    Komorowski, J.4
  • 6
    • 72949114072 scopus 로고    scopus 로고
    • Exploiting tree-based variable importances to selectively identify relevant variables
    • Huynh-Thu, V.A., Wehenkel, L., Geurts, P.: Exploiting tree-based variable importances to selectively identify relevant variables. In: JMLR:Workshop and Conference Proceedings, vol. 4, pp. 60–73 (2008)
    • (2008) JMLR:Workshop and Conference Proceedings , vol.4 , pp. 60-73
    • Huynh-Thu, V.A.1    Wehenkel, L.2    Geurts, P.3
  • 7
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)
    • (1997) Artif. Intell , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 8
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • Kursa, M.B., Rudnicki, W.R.: Feature selection with the Boruta package. J. Stat. Softw. 36(11), 1–13 (2010)
    • (2010) J. Stat. Softw , vol.36 , Issue.11 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 9
    • 77957293954 scopus 로고    scopus 로고
    • Boruta—a system for feature selection
    • Kursa, M.B., Jankowski, A., Rudnicki, W.R.: Boruta—a system for feature selection. Fundam. Inform. 101(4), 271–285 (2010)
    • (2010) Fundam. Inform , vol.101 , Issue.4 , pp. 271-285
    • Kursa, M.B.1    Jankowski, A.2    Rudnicki, W.R.3
  • 10
    • 77958189087 scopus 로고    scopus 로고
    • mlbench: Machine learning benchmark problems
    • Leisch, F., Dimitriadou, E.: mlbench: machine learning benchmark problems. R package version 2.1–1 (2010)
    • (2010) R package version , vol.2 , pp. 1
    • Leisch, F.1    Dimitriadou, E.2
  • 11
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by random forest
    • Liaw, A., Wiener, M.: Classification and regression by random forest. R News 2(3), 18–22 (2002). http://CRAN.R-project.org/doc/Rnews/
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 12
    • 84876578435 scopus 로고    scopus 로고
    • Quantitative structureactivity relationship models for ready biodegradability of chemicals
    • Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R., Consonni, V.: Quantitative structureactivity relationship models for ready biodegradability of chemicals. J. Chem. Inf. Model. 53(4), 867–878 (2013)
    • (2013) J. Chem. Inf. Model , vol.53 , Issue.4 , pp. 867-878
    • Mansouri, K.1    Ringsted, T.2    Ballabio, D.3    Todeschini, R.4    Consonni, V.5
  • 14
    • 33845264422 scopus 로고    scopus 로고
    • A statistical method for determining importance of variables in an information system
    • In: Greco, S., Hata, Y., Hirano, S., Inuiguchi,M., Miyamoto, S., Nguyen, H., Slowinski, R. (eds.), 2006, Springer, Berlin/Heidelberg
    • Rudnicki, W.R., Kierczak, M., Koronacki, J., Komorowski, J.: A statistical method for determining importance of variables in an information system. In: Greco, S., Hata, Y., Hirano, S., Inuiguchi,M., Miyamoto, S., Nguyen, H., Slowinski, R. (eds.) Rough Sets and Current Trends in Computing, vol. 4259/2006, pp. 557–566. Springer, Berlin/Heidelberg (2006)
    • (2006) Rough Sets and Current Trends in Computing , vol.4259 , pp. 557-566
    • Rudnicki, W.R.1    Kierczak, M.2    Koronacki, J.3    Komorowski, J.4
  • 15
    • 2942701493 scopus 로고    scopus 로고
    • Ranking a random feature for variable and feature selection
    • Stoppiglia, H., Dreyfus, G., Dubois, R., Oussar, Y.: Ranking a random feature for variable and feature selection. J. Mach. Learn. Res. 3(7–8), 1399–1414 (2003)
    • (2003) J. Mach. Learn. Res , vol.3 , Issue.7-8 , pp. 1399-1414
    • Stoppiglia, H.1    Dreyfus, G.2    Dubois, R.3    Oussar, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.