메뉴 건너뛰기




Volumn 1269, Issue , 2015, Pages 163-172

Quantifying entire transcriptomes by aligned RNA-seq data

Author keywords

Annotated genes; Coding genes; Differential expression; RNAseq workflow

Indexed keywords

MESSENGER RNA; MICRORNA; RNA; TRANSCRIPTOME;

EID: 84921735939     PISSN: 10643745     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4939-2291-8_10     Document Type: Article
Times cited : (1)

References (25)
  • 2
    • 84875247710 scopus 로고    scopus 로고
    • Transcriptomics in the RNA-seq era
    • McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17(1): 4-11
    • (2013) Curr Opin Chem Biol , vol.17 , Issue.1 , pp. 4-11
    • McGettigan, P.A.1
  • 3
    • 84878730100 scopus 로고    scopus 로고
    • Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing
    • Arribere JA, Gilbert WV (2013) Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing. Genome Res 23(6):977-987
    • (2013) Genome Res , vol.23 , Issue.6 , pp. 977-987
    • Arribere, J.A.1    Gilbert, W.V.2
  • 4
    • 84857377692 scopus 로고    scopus 로고
    • Optimizing a massive parallel sequencing workfl ow for quantitative miRNA expression analysis
    • Cordero F, Beccuti M, Arigoni M, Donatelli S, Calogero RA (2012) Optimizing a massive parallel sequencing workfl ow for quantitative miRNA expression analysis. PloS One 7(2): e31630
    • (2012) Plos One , vol.7 , Issue.2
    • Cordero, F.1    Beccuti, M.2    Arigoni, M.3    Donatelli, S.4    Calogero, R.A.5
  • 7
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen KD, Wu Z, Irizarry RA, Leek JT (2011) Sequencing technology does not eliminate biological variability. Nat Biotechnol 29(7):572-573
    • (2011) Nat Biotechnol , vol.29 , Issue.7 , pp. 572-573
    • Hansen, K.D.1    Wu, Z.2    Irizarry, R.A.3    Leek, J.T.4
  • 8
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics 14:91
    • (2013) BMC Bioinformatics , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 14
    • 52649157765 scopus 로고    scopus 로고
    • Substantial biases in ultra-short read data sets from high-throughput DNA sequencing
    • Dohm JC, Lottaz C, Borodina T, Himmelbauer H (2008) Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res 36(16):e105
    • (2008) Nucleic Acids Res , vol.36 , Issue.16 , pp. 105
    • Dohm, J.C.1    Lottaz, C.2    Borodina, T.3    Himmelbauer, H.4
  • 15
    • 77955883388 scopus 로고    scopus 로고
    • Biases in Illumina transcriptome sequencing caused by random hexamer priming
    • Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38(12):e131
    • (2010) Nucleic Acids Res , vol.38 , Issue.12 , pp. 131
    • Hansen, K.D.1    Brenner, S.E.2    Dudoit, S.3
  • 16
    • 79951522882 scopus 로고    scopus 로고
    • Using nonuniform read distribution models to improve isoform expression inference in RNA-Seq
    • Wu Z, Wang X, Zhang X (2011) Using nonuniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics 27(4):502-508
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 502-508
    • Wu, Z.1    Wang, X.2    Zhang, X.3
  • 18
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: Accurate transcript quantifi cation from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN (2011) RSEM: accurate transcript quantifi cation from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 20
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106
    • (2010) Genome Biol , vol.11 , Issue.10
    • Anders, S.1    Huber, W.2
  • 22
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22(10):2008-2017
    • (2012) Genome Res , vol.22 , Issue.10 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 23
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data
    • Hardcastle TJ, Kelly KA (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics 11:422
    • (2010) BMC Bioinformatics , vol.11
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 24
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1): 139-140
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 25
    • 36949003693 scopus 로고    scopus 로고
    • OneChannelGUI: A graphical interface to bioconductor tools, designed for life scientists who are not familiar with R language
    • Sanges R, Cordero F, Calogero RA (2007) oneChannelGUI: a graphical interface to bioconductor tools, designed for life scientists who are not familiar with R language. Bioinformatics 23(24):3406-3408
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3406-3408
    • Sanges, R.1    Cordero, F.2    Calogero, R.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.