-
1
-
-
32944480206
-
The expression patterns of deubiquitinating enzymes, USP22 and Usp22
-
Lee HJ, Kim MS, Shin JM, Park TJ, Chung HM and Baek KH: The expression patterns of deubiquitinating enzymes, USP22 and Usp22. Gene Expr Patterns 6:277-284, 2006.
-
(2006)
Gene Expr Patterns
, vol.6
, pp. 277-284
-
-
Lee, H.J.1
Kim, M.S.2
Shin, J.M.3
Park, T.J.4
Chung, H.M.5
Baek, K.H.6
-
2
-
-
78650514966
-
Implication of USP22 in the regulation of BMI-1, c-Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas
-
Liu Y, Yang Y, Xu H and Dong X: Implication of USP22 in the regulation of BMI-1, c-Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas. Diagn Mol Pathol 19:194-200, 2010.
-
(2010)
Diagn Mol Pathol
, vol.19
, pp. 194-200
-
-
Liu, Y.1
Yang, Y.2
Xu, H.3
Dong, X.4
-
3
-
-
81155134058
-
The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma
-
Yang DD, Cui BB, Sun LY, et al: The co-expression of USP22 and BMI-1 may promote cancer progression and predict therapy failure in gastric carcinoma. Cell Biochem Biophys 61:703-710, 2011.
-
(2011)
Cell Biochem Biophys
, vol.61
, pp. 703-710
-
-
Yang, D.D.1
Cui, B.B.2
Sun, L.Y.3
-
4
-
-
79961170767
-
Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer
-
Zhang Y, Yao L, Zhang X, et al: Elevated expression of USP22 in correlation with poor prognosis in patients with invasive breast cancer. J Cancer Res Clin Oncol 137:1245-1253, 2011.
-
(2011)
J Cancer Res Clin Oncol
, vol.137
, pp. 1245-1253
-
-
Zhang, Y.1
Yao, L.2
Zhang, X.3
-
5
-
-
38149078715
-
The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression
-
Zhang XY, Varthi M, Sykes SM, et al: The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell 29:102-111, 2008.
-
(2008)
Mol Cell
, vol.29
, pp. 102-111
-
-
Zhang, X.Y.1
Varthi, M.2
Sykes, S.M.3
-
6
-
-
38149068875
-
A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing
-
Zhao Y, Lang G, Ito S, et al: A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92-101, 2008.
-
(2008)
Mol Cell
, vol.29
, pp. 92-101
-
-
Zhao, Y.1
Lang, G.2
Ito, S.3
-
7
-
-
68349133311
-
Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance
-
Atanassov BS, Evrard YA, Multani AS, et al: Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 35:352-364, 2009.
-
(2009)
Mol Cell
, vol.35
, pp. 352-364
-
-
Atanassov, B.S.1
Evrard, Y.A.2
Multani, A.S.3
-
8
-
-
84861461517
-
USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development
-
Lin Z, Yang H, Kong Q, et al: USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell 46:484-494, 2012.
-
(2012)
Mol Cell
, vol.46
, pp. 484-494
-
-
Lin, Z.1
Yang, H.2
Kong, Q.3
-
9
-
-
80052281618
-
USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1
-
Atanassov BS and Dent SY: USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 12:924-930, 2011.
-
(2011)
EMBO Rep
, vol.12
, pp. 924-930
-
-
Atanassov, B.S.1
Dent, S.Y.2
-
10
-
-
84882395972
-
The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2)
-
Sussman RT, Stanek TJ, Esteso P, Gearhart JD, Knudsen KE and McMahon SB: The epigenetic modifier ubiquitin-specific protease 22 (USP22) regulates embryonic stem cell differentiation via transcriptional repression of sex-determining region Y-box 2 (SOX2). J Biol Chem 288:24234-24246, 2013.
-
(2013)
J Biol Chem
, vol.288
, pp. 24234-24246
-
-
Sussman, R.T.1
Stanek, T.J.2
Esteso, P.3
Gearhart, J.D.4
Knudsen, K.E.5
McMahon, S.B.6
-
11
-
-
84871588160
-
Cloning and characterization of the human USP22 gene promoter
-
Xiong J, Che X, Li X, Yu H, Gong Z and Li W: Cloning and characterization of the human USP22 gene promoter. PLoS One 7:e52716, 2012.
-
(2012)
PLoS One
, vol.7
, pp. e52716
-
-
Xiong, J.1
Che, X.2
Li, X.3
Yu, H.4
Gong, Z.5
Li, W.6
-
12
-
-
0029155365
-
Modulation by melatonin of protein secretion from melanoma cells: Is cAMP involved?
-
Bubis M and Zisapel N: Modulation by melatonin of protein secretion from melanoma cells: is cAMP involved? Mol Cell Endocrinol 112:169-175, 1995.
-
(1995)
Mol Cell Endocrinol
, vol.112
, pp. 169-175
-
-
Bubis, M.1
Zisapel, N.2
-
13
-
-
0034698838
-
Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis
-
Nakamura K, Bossy-Wetzel E, Burns K, et al: Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731-740, 2000.
-
(2000)
J Cell Biol
, vol.150
, pp. 731-740
-
-
Nakamura, K.1
Bossy-Wetzel, E.2
Burns, K.3
-
14
-
-
84865623633
-
Resveratrol inhibits LPS-induced MAPK activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells
-
Zong Y, Sun L, Liu B, et al: Resveratrol inhibits LPS-induced MAPK activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS One 7:e44107, 2012.
-
(2012)
PLoS One
, vol.7
, pp. e44107
-
-
Zong, Y.1
Sun, L.2
Liu, B.3
-
15
-
-
25444532087
-
Death-from-cancer signatures and stem cell contribution to metastatic cancer
-
Glinsky GV: Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 4:1171-1175, 2005.
-
(2005)
Cell Cycle
, vol.4
, pp. 1171-1175
-
-
Glinsky, G.V.1
-
16
-
-
33744906046
-
Genomic models of metastatic cancer: Functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway
-
Glinsky GV: Genomic models of metastatic cancer: functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle 5:1208-1216, 2006.
-
(2006)
Cell Cycle
, vol.5
, pp. 1208-1216
-
-
Glinsky, G.V.1
-
17
-
-
0030814764
-
Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription
-
Tinti C, Yang C, Seo H, et al: Structure/function relationship of the cAMP response element in tyrosine hydroxylase gene transcription. J Biol Chem 272:19158-19164, 1997.
-
(1997)
J Biol Chem
, vol.272
, pp. 19158-19164
-
-
Tinti, C.1
Yang, C.2
Seo, H.3
-
19
-
-
33645731005
-
Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes
-
White PC, Shore AM, Clement M, et al: Regulation of cyclin D2 and the cyclin D2 promoter by protein kinase A and CREB in lymphocytes. Oncogene 25:2170-2180, 2006.
-
(2006)
Oncogene
, vol.25
, pp. 2170-2180
-
-
White, P.C.1
Shore, A.M.2
Clement, M.3
-
20
-
-
0029810469
-
Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis
-
Wilson BE, Mochon E and Boxer LM: Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 16:5546-5556, 1996.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 5546-5556
-
-
Wilson, B.E.1
Mochon, E.2
Boxer, L.M.3
-
21
-
-
57149102086
-
Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs
-
Mayer SI, Willars GB, Nishida E and Thiel G: Elk-1, CREB, and MKP-1 regulate Egr-1 expression in gonadotropin-releasing hormone stimulated gonadotrophs. J Cell Biochem 105:1267-1278, 2008.
-
(2008)
J Cell Biochem
, vol.105
, pp. 1267-1278
-
-
Mayer, S.I.1
Willars, G.B.2
Nishida, E.3
Thiel, G.4
-
22
-
-
65249140538
-
CREB in the pathophysiology of cancer: Implications for targeting transcription factors for cancer therapy
-
Sakamoto KM and Frank DA: CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res 15:2583-2587, 2009.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 2583-2587
-
-
Sakamoto, K.M.1
Frank, D.A.2
-
23
-
-
77957892438
-
CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma
-
Melnikova VO, Dobroff AS, Zigler M, et al: CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma. PLoS One 5:e12452, 2010.
-
(2010)
PLoS One
, vol.5
, pp. e12452
-
-
Melnikova, V.O.1
Dobroff, A.S.2
Zigler, M.3
-
24
-
-
0027236765
-
Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription
-
Quinn PG: Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J Biol Chem 268:16999-17009, 1993.
-
(1993)
J Biol Chem
, vol.268
, pp. 16999-17009
-
-
Quinn, P.G.1
-
25
-
-
0036291366
-
Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues
-
Rosenberg D, Groussin L, Jullian E, Perlemoine K, Bertagna X and Bertherat J: Role of the PKA-regulated transcription factor CREB in development and tumorigenesis of endocrine tissues. Ann NY Acad Sci 968:65-74, 2002.
-
(2002)
Ann NY Acad Sci
, vol.968
, pp. 65-74
-
-
Rosenberg, D.1
Groussin, L.2
Jullian, E.3
Perlemoine, K.4
Bertagna, X.5
Bertherat, J.6
-
26
-
-
84864312233
-
OX2R activation induces PKC-mediated ERK and CREB phosphorylation
-
Guo Y and Feng P: OX2R activation induces PKC-mediated ERK and CREB phosphorylation. Exp Cell Res 318:2004-2013, 2012.
-
(2012)
Exp Cell Res
, vol.318
, pp. 2004-2013
-
-
Guo, Y.1
Feng, P.2
-
27
-
-
36349025340
-
Calcium/calmodulindependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity
-
Takeda H, Kitaoka Y, Hayashi Y, et al: Calcium/calmodulindependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity. Brain Res 1184:306-315, 2007.
-
(2007)
Brain Res
, vol.1184
, pp. 306-315
-
-
Takeda, H.1
Kitaoka, Y.2
Hayashi, Y.3
-
28
-
-
0032522663
-
Extracellular HIV-1 Tat protein induces the rapid Ser133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells
-
Gibellini D, Bassini A, Pierpaoli S, et al: Extracellular HIV-1 Tat protein induces the rapid Ser133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells. J Immunol 160:3891-3898, 1998.
-
(1998)
J Immunol
, vol.160
, pp. 3891-3898
-
-
Gibellini, D.1
Bassini, A.2
Pierpaoli, S.3
-
29
-
-
23944499856
-
The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells
-
Delghandi MP, Johannessen M and Moens U: The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell Signal 17:1343-1351, 2005.
-
(2005)
Cell Signal
, vol.17
, pp. 1343-1351
-
-
Delghandi, M.P.1
Johannessen, M.2
Moens, U.3
-
30
-
-
0035950523
-
A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element
-
Atlas E, Stramwasser M and Mueller CR: A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element. Oncogene 20:7110-7114, 2001.
-
(2001)
Oncogene
, vol.20
, pp. 7110-7114
-
-
Atlas, E.1
Stramwasser, M.2
Mueller, C.R.3
-
31
-
-
0038185273
-
Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness
-
Conkright MD, Guzman E, Flechner L, Su AI, Hogenesch JB and Montminy M: Genome-wide analysis of CREB target genes reveals a core promoter requirement for cAMP responsiveness. Mol Cell 11:1101-1108, 2003.
-
(2003)
Mol Cell
, vol.11
, pp. 1101-1108
-
-
Conkright, M.D.1
Guzman, E.2
Flechner, L.3
Su, A.I.4
Hogenesch, J.B.5
Montminy, M.6
|