메뉴 건너뛰기




Volumn 25, Issue , 2015, Pages 141-151

Solar-driven proton and carbon dioxide reduction to fuels - lessons from metalloenzymes

Author keywords

[No Author keywords available]

Indexed keywords

CARBON DIOXIDE; CARBON MONOXIDE DEHYDROGENASE; ENZYME; FUEL; HYDROGEN; HYDROGENASE; METAL; METALLOENZYME; NANOPARTICLE; PROTON; UNCLASSIFIED DRUG; WATER; METALLOPROTEIN;

EID: 84921501138     PISSN: 13675931     EISSN: 18790402     Source Type: Journal    
DOI: 10.1016/j.cbpa.2015.01.001     Document Type: Review
Times cited : (49)

References (73)
  • 1
    • 0001877830 scopus 로고    scopus 로고
    • High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes
    • Rocheleau R.E., Miller E.L., Misra A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 1998, 12:3-10.
    • (1998) Energy Fuels , vol.12 , pp. 3-10
    • Rocheleau, R.E.1    Miller, E.L.2    Misra, A.3
  • 2
    • 0032540476 scopus 로고    scopus 로고
    • A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
    • Khaselev O., Turner J.A. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 1998, 280:425-427.
    • (1998) Science , vol.280 , pp. 425-427
    • Khaselev, O.1    Turner, J.A.2
  • 3
    • 0035254142 scopus 로고    scopus 로고
    • High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production
    • Khaselev O., Bansal A., Turner J.A. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energy 2001, 26:127-132.
    • (2001) Int J Hydrogen Energy , vol.26 , pp. 127-132
    • Khaselev, O.1    Bansal, A.2    Turner, J.A.3
  • 4
    • 35248851939 scopus 로고    scopus 로고
    • Solar hydrogen production by water splitting with a conversion efficiency of 18%
    • Peharz G., Dimroth F., Wittstadt U. Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrogen Energy 2007, 32:3248-3252.
    • (2007) Int J Hydrogen Energy , vol.32 , pp. 3248-3252
    • Peharz, G.1    Dimroth, F.2    Wittstadt, U.3
  • 5
    • 84887986430 scopus 로고    scopus 로고
    • A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency
    • Jacobsson T.J., Fjallstrom V., Sahlberg M., Edoff M., Edvinsson T. A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energy Environ Sci 2013, 6:3676-3683.
    • (2013) Energy Environ Sci , vol.6 , pp. 3676-3683
    • Jacobsson, T.J.1    Fjallstrom, V.2    Sahlberg, M.3    Edoff, M.4    Edvinsson, T.5
  • 6
    • 80052154091 scopus 로고    scopus 로고
    • Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes
    • Armstrong F.A., Hirst J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci U S A 2011, 108:14049-14054.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 14049-14054
    • Armstrong, F.A.1    Hirst, J.2
  • 7
    • 84899552395 scopus 로고    scopus 로고
    • Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase
    • Can M., Armstrong F.A., Ragsdale S.W. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 2014, 114:4149-4174.
    • (2014) Chem Rev , vol.114 , pp. 4149-4174
    • Can, M.1    Armstrong, F.A.2    Ragsdale, S.W.3
  • 8
    • 49449111220 scopus 로고    scopus 로고
    • Reversible interconversion of carbon dioxide and formate by an electroactive enzyme
    • Reda T., Plugge C.M., Abram N.J., Hirst J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc Natl Acad Sci U S A 2008, 105:10654-10658.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 10654-10658
    • Reda, T.1    Plugge, C.M.2    Abram, N.J.3    Hirst, J.4
  • 9
    • 85054682733 scopus 로고    scopus 로고
    • Electrochemistry of hydrogenases
    • Armstrong F.A. Electrochemistry of hydrogenases. Electroanal Chem 2014, 25:33-103.
    • (2014) Electroanal Chem , vol.25 , pp. 33-103
    • Armstrong, F.A.1
  • 10
    • 84874479302 scopus 로고    scopus 로고
    • Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions
    • Thoi V.S., Sun Y., Long J.R., Chang C.J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev 2013, 42:2388-2400.
    • (2013) Chem Soc Rev , vol.42 , pp. 2388-2400
    • Thoi, V.S.1    Sun, Y.2    Long, J.R.3    Chang, C.J.4
  • 11
    • 0037149937 scopus 로고    scopus 로고
    • Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst
    • Jones A.K., Sillery E., Albracht S.P.J., Armstrong F.A. Direct comparison of the electrocatalytic oxidation of hydrogen by an enzyme and a platinum catalyst. Chem Commun 2002, 866-867.
    • (2002) Chem Commun , pp. 866-867
    • Jones, A.K.1    Sillery, E.2    Albracht, S.P.J.3    Armstrong, F.A.4
  • 12
    • 84863899218 scopus 로고    scopus 로고
    • Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases
    • Hexter S.V., Grey F., Happe T., Climent V., Armstrong F.A. Electrocatalytic mechanism of reversible hydrogen cycling by enzymes and distinctions between the major classes of hydrogenases. Proc Natl Acad Sci U S A 2012, 109:11516-11521.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 11516-11521
    • Hexter, S.V.1    Grey, F.2    Happe, T.3    Climent, V.4    Armstrong, F.A.5
  • 14
    • 53549119985 scopus 로고    scopus 로고
    • The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum
    • Parkin A., Goldet G., Cavazza C., Fontecilla-Camps J.C., Armstrong F.A. The difference a Se makes? Oxygen-tolerant hydrogen production by the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum. J Am Chem Soc 2008, 130:13410-13416.
    • (2008) J Am Chem Soc , vol.130 , pp. 13410-13416
    • Parkin, A.1    Goldet, G.2    Cavazza, C.3    Fontecilla-Camps, J.C.4    Armstrong, F.A.5
  • 18
    • 85028099698 scopus 로고    scopus 로고
    • Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å
    • Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 2011, 473:55-60.
    • (2011) Nature , vol.473 , pp. 55-60
    • Umena, Y.1    Kawakami, K.2    Shen, J.-R.3    Kamiya, N.4
  • 19
    • 84859631223 scopus 로고    scopus 로고
    • Recent developments in research on water oxidation by photosystem II
    • Dau H., Zaharieva I., Haumann M. Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 2012, 16:3-10.
    • (2012) Curr Opin Chem Biol , vol.16 , pp. 3-10
    • Dau, H.1    Zaharieva, I.2    Haumann, M.3
  • 21
    • 84887680701 scopus 로고    scopus 로고
    • Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction
    • McCrory C.C.L., Jung S., Peters J.C., Jaramillo T.F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 2013, 135:16977-16987.
    • (2013) J Am Chem Soc , vol.135 , pp. 16977-16987
    • McCrory, C.C.L.1    Jung, S.2    Peters, J.C.3    Jaramillo, T.F.4
  • 22
    • 84905221559 scopus 로고    scopus 로고
    • Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks
    • Thomas J.M. Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks. ChemSusChem 2014, 7:1801-1832.
    • (2014) ChemSusChem , vol.7 , pp. 1801-1832
    • Thomas, J.M.1
  • 23
    • 78650964757 scopus 로고    scopus 로고
    • Photoprotection in plants: a new light on photosystem II damage
    • Takahashi S., Badger M.R. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 2011, 16:53-60.
    • (2011) Trends Plant Sci , vol.16 , pp. 53-60
    • Takahashi, S.1    Badger, M.R.2
  • 24
    • 50149121231 scopus 로고    scopus 로고
    • In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+
    • Kanan M.W., Nocera D.G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321:1072-1075.
    • (2008) Science , vol.321 , pp. 1072-1075
    • Kanan, M.W.1    Nocera, D.G.2
  • 25
    • 77953751030 scopus 로고    scopus 로고
    • Nickel-borate oxygen-evolving catalyst that functions under benign conditions
    • Dincă M., Surendranath Y., Nocera D.G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc Natl Acad Sci U S A 2010, 107:10337-10341.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 10337-10341
    • Dincă, M.1    Surendranath, Y.2    Nocera, D.G.3
  • 26
    • 84906274727 scopus 로고    scopus 로고
    • Protein film photoelectrochemistry of the water oxidation enzyme photosystem II
    • Kato M., Zhang J.Z., Paul N., Reisner E. Protein film photoelectrochemistry of the water oxidation enzyme photosystem II. Chem Soc Rev 2014, 43:6485-6497.
    • (2014) Chem Soc Rev , vol.43 , pp. 6485-6497
    • Kato, M.1    Zhang, J.Z.2    Paul, N.3    Reisner, E.4
  • 27
    • 84878847923 scopus 로고    scopus 로고
    • Photosystem II-gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems
    • Noji T., Suzuki H., Gotoh T., Iwai M., Ikeuchi M., Tomo T., Noguchi T. Photosystem II-gold nanoparticle conjugate as a nanodevice for the development of artificial light-driven water-splitting systems. J Phys Chem Lett 2011, 2:2448-2452.
    • (2011) J Phys Chem Lett , vol.2 , pp. 2448-2452
    • Noji, T.1    Suzuki, H.2    Gotoh, T.3    Iwai, M.4    Ikeuchi, M.5    Tomo, T.6    Noguchi, T.7
  • 28
    • 84861399242 scopus 로고    scopus 로고
    • Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode
    • Kato M., Cardona T., Rutherford A.W., Reisner E. Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium-tin oxide electrode. J Am Chem Soc 2012, 134:8332-8335.
    • (2012) J Am Chem Soc , vol.134 , pp. 8332-8335
    • Kato, M.1    Cardona, T.2    Rutherford, A.W.3    Reisner, E.4
  • 29
    • 84880799125 scopus 로고    scopus 로고
    • Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation
    • Kato M., Cardona T., Rutherford A.W., Reisner E. Covalent immobilization of oriented photosystem II on a nanostructured electrode for solar water oxidation. J Am Chem Soc 2013, 135:10610-10613.
    • (2013) J Am Chem Soc , vol.135 , pp. 10610-10613
    • Kato, M.1    Cardona, T.2    Rutherford, A.W.3    Reisner, E.4
  • 31
    • 84872285132 scopus 로고    scopus 로고
    • Integration of photoswitchable proteins photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications
    • Wang F., Liu X., Willner I. Integration of photoswitchable proteins photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications. Adv Mater 2013, 25:349-377.
    • (2013) Adv Mater , vol.25 , pp. 349-377
    • Wang, F.1    Liu, X.2    Willner, I.3
  • 32
    • 84898816329 scopus 로고    scopus 로고
    • Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells
    • Yehezkeli O., Tel-Vered R., Michaeli D., Willner I., Nechushtai R. Photosynthetic reaction center-functionalized electrodes for photo-bioelectrochemical cells. Photosynth Res 2014, 120:71-85.
    • (2014) Photosynth Res , vol.120 , pp. 71-85
    • Yehezkeli, O.1    Tel-Vered, R.2    Michaeli, D.3    Willner, I.4    Nechushtai, R.5
  • 33
    • 84890701346 scopus 로고    scopus 로고
    • Combination of a Photosystem 1-based photocathode and a Photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications
    • Kothe T., Plumeré N., Badura A., Nowaczyk M.M., Guschin D.A., Rögner M., Schuhmann W. Combination of a Photosystem 1-based photocathode and a Photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew Chem Int Ed 2013, 52:14233-14236.
    • (2013) Angew Chem Int Ed , vol.52 , pp. 14233-14236
    • Kothe, T.1    Plumeré, N.2    Badura, A.3    Nowaczyk, M.M.4    Guschin, D.A.5    Rögner, M.6    Schuhmann, W.7
  • 35
    • 72049098754 scopus 로고    scopus 로고
    • Electron flow through proteins
    • Gray H.B., Winkler J.R. Electron flow through proteins. Chem Phys Lett 2009, 483:1-9.
    • (2009) Chem Phys Lett , vol.483 , pp. 1-9
    • Gray, H.B.1    Winkler, J.R.2
  • 36
    • 0033523919 scopus 로고    scopus 로고
    • Natural engineering principles of electron tunnelling in biological oxidation-reduction
    • Page C.C., Moser C.C., Chen X., Dutton P.L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 1999, 402:47-52.
    • (1999) Nature , vol.402 , pp. 47-52
    • Page, C.C.1    Moser, C.C.2    Chen, X.3    Dutton, P.L.4
  • 39
    • 0009139619 scopus 로고
    • Viologen derivatization of titanium dioxide particles and light-induced hydrogen evolution by immobilized hydrogenase
    • Cuendet P., Grätzel M., Pelaprat M.L. Viologen derivatization of titanium dioxide particles and light-induced hydrogen evolution by immobilized hydrogenase. J Electroanal Chem Interfacial Electrochem 1984, 181:173-185.
    • (1984) J Electroanal Chem Interfacial Electrochem , vol.181 , pp. 173-185
    • Cuendet, P.1    Grätzel, M.2    Pelaprat, M.L.3
  • 42
    • 84903528618 scopus 로고    scopus 로고
    • The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction
    • Liu J., Cazelles R., Chen Z.P., Zhou H., Galarneau A., Antonietti M. The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Phys Chem Chem Phys 2014, 16:14699-14705.
    • (2014) Phys Chem Chem Phys , vol.16 , pp. 14699-14705
    • Liu, J.1    Cazelles, R.2    Chen, Z.P.3    Zhou, H.4    Galarneau, A.5    Antonietti, M.6
  • 44
    • 84887519502 scopus 로고    scopus 로고
    • Photocatalytic hydrogen evolution with a hydrogenase in a mediator-free system under high levels of oxygen
    • Sakai T., Mersch D., Reisner E. Photocatalytic hydrogen evolution with a hydrogenase in a mediator-free system under high levels of oxygen. Angew Chem Int Ed 2013, 52:12313-12316.
    • (2013) Angew Chem Int Ed , vol.52 , pp. 12313-12316
    • Sakai, T.1    Mersch, D.2    Reisner, E.3
  • 45
    • 77957313955 scopus 로고    scopus 로고
    • ATP- and iron-protein-independent activation of nitrogenase catalysis by light
    • Roth L.E., Nguyen J.C., Tezcan F.A. ATP- and iron-protein-independent activation of nitrogenase catalysis by light. J Am Chem Soc 2010, 132:13672-13674.
    • (2010) J Am Chem Soc , vol.132 , pp. 13672-13674
    • Roth, L.E.1    Nguyen, J.C.2    Tezcan, F.A.3
  • 46
    • 73849083474 scopus 로고    scopus 로고
    • Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase
    • Krassen H., Schwarze A., Friedrich B., Ataka K., Lenz O., Heberle J. Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano 2009, 3:4055-4061.
    • (2009) ACS Nano , vol.3 , pp. 4055-4061
    • Krassen, H.1    Schwarze, A.2    Friedrich, B.3    Ataka, K.4    Lenz, O.5    Heberle, J.6
  • 48
    • 77954296694 scopus 로고    scopus 로고
    • Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex
    • Samuel A.P.S., Co D.T., Stern C.L., Wasielewski M.R. Ultrafast photodriven intramolecular electron transfer from a zinc porphyrin to a readily reduced diiron hydrogenase model complex. J Am Chem Soc 2010, 132:8813-8815.
    • (2010) J Am Chem Soc , vol.132 , pp. 8813-8815
    • Samuel, A.P.S.1    Co, D.T.2    Stern, C.L.3    Wasielewski, M.R.4
  • 50
    • 84884324723 scopus 로고    scopus 로고
    • Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion
    • King P.W. Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. BBA-Bioenergetics 2013, (1827):949-957.
    • (2013) BBA-Bioenergetics , Issue.1827 , pp. 949-957
    • King, P.W.1
  • 57
    • 78349259311 scopus 로고    scopus 로고
    • Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production
    • Brown K.A., Dayal S., Ai X., Rumbles G., King P.W. Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production. J Am Chem Soc 2010, 132:9672-9680.
    • (2010) J Am Chem Soc , vol.132 , pp. 9672-9680
    • Brown, K.A.1    Dayal, S.2    Ai, X.3    Rumbles, G.4    King, P.W.5
  • 61
    • 84877146843 scopus 로고    scopus 로고
    • Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation
    • Moriya Y., Takata T., Domen K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 2013, 257:1957-1969.
    • (2013) Coord Chem Rev , vol.257 , pp. 1957-1969
    • Moriya, Y.1    Takata, T.2    Domen, K.3
  • 62
    • 84908056147 scopus 로고    scopus 로고
    • Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst
    • Caputo C.A., Gross M.A., Lau V.W., Cavazza C., Lotsch B.V., Reisner E. Photocatalytic hydrogen production using polymeric carbon nitride with a hydrogenase and a bioinspired synthetic Ni catalyst. Angew Chem Int Ed 2014, 53:11538-11542.
    • (2014) Angew Chem Int Ed , vol.53 , pp. 11538-11542
    • Caputo, C.A.1    Gross, M.A.2    Lau, V.W.3    Cavazza, C.4    Lotsch, B.V.5    Reisner, E.6
  • 64
    • 84873666984 scopus 로고    scopus 로고
    • A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase
    • Wang V.C.C., Can M., Pierce E., Ragsdale S.W., Armstrong F.A. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J Am Chem Soc 2013, 135:2198-2206.
    • (2013) J Am Chem Soc , vol.135 , pp. 2198-2206
    • Wang, V.C.C.1    Can, M.2    Pierce, E.3    Ragsdale, S.W.4    Armstrong, F.A.5
  • 65
    • 84896967315 scopus 로고    scopus 로고
    • Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer
    • Murphy B.J., Sargent F., Armstrong F.A. Transforming an oxygen-tolerant [NiFe] uptake hydrogenase into a proficient, reversible hydrogen producer. Energy Environ Sci 2014, 7:1426-1433.
    • (2014) Energy Environ Sci , vol.7 , pp. 1426-1433
    • Murphy, B.J.1    Sargent, F.2    Armstrong, F.A.3
  • 66
    • 84901779742 scopus 로고    scopus 로고
    • A unified model for surface electrocatalysis based on observations with enzymes
    • Hexter S.V., Esterle T.F., Armstrong F.A. A unified model for surface electrocatalysis based on observations with enzymes. Phys Chem Chem Phys 2014, 16:11822-11833.
    • (2014) Phys Chem Chem Phys , vol.16 , pp. 11822-11833
    • Hexter, S.V.1    Esterle, T.F.2    Armstrong, F.A.3
  • 68
    • 84921514266 scopus 로고    scopus 로고
    • A multi-heme flavoenzyme as a solar conversion catalyst
    • Bachmeier A., Murphy B.J., Armstrong F.A. A multi-heme flavoenzyme as a solar conversion catalyst. J Am Chem Soc 2014, 136:12876-12879.
    • (2014) J Am Chem Soc , vol.136 , pp. 12876-12879
    • Bachmeier, A.1    Murphy, B.J.2    Armstrong, F.A.3
  • 69
    • 84919749185 scopus 로고    scopus 로고
    • Distance dependent charge separation and recombination in semiconductor/molecular catalyst systems for water splitting
    • Reynal A., Willkomm J., Muresan N.M., Lakadamyali F., Planells M., Reisner E., Durrant J.R. Distance dependent charge separation and recombination in semiconductor/molecular catalyst systems for water splitting. Chem Commun 2014, 50:12768-12771.
    • (2014) Chem Commun , vol.50 , pp. 12768-12771
    • Reynal, A.1    Willkomm, J.2    Muresan, N.M.3    Lakadamyali, F.4    Planells, M.5    Reisner, E.6    Durrant, J.R.7
  • 70
    • 84863829103 scopus 로고    scopus 로고
    • Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies
    • Greene B.L., Joseph C.A., Maroney M.J., Dyer R.B. Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 2012, 134:11108-11111.
    • (2012) J Am Chem Soc , vol.134 , pp. 11108-11111
    • Greene, B.L.1    Joseph, C.A.2    Maroney, M.J.3    Dyer, R.B.4
  • 71
    • 84887538331 scopus 로고    scopus 로고
    • Nanobiocatalytic assemblies for artificial photosynthesis
    • Kim J.H., Nam D.H., Park C.B. Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 2014, 28:1-9.
    • (2014) Curr Opin Biotechnol , vol.28 , pp. 1-9
    • Kim, J.H.1    Nam, D.H.2    Park, C.B.3
  • 72
    • 84868516904 scopus 로고    scopus 로고
    • A photocatalyst/enzyme couple that uses solar energy in the asymmetric reduction of acetophenones
    • Choudhury S., Baeg J.-O., Park N.-J., Yadav R.K. A photocatalyst/enzyme couple that uses solar energy in the asymmetric reduction of acetophenones. Angew Chem Int Ed 2012, 51:11624-11628.
    • (2012) Angew Chem Int Ed , vol.51 , pp. 11624-11628
    • Choudhury, S.1    Baeg, J.-O.2    Park, N.-J.3    Yadav, R.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.