메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 1242-1250

Square deal: Lower bounds and improved relaxations for tensor recovery

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; RECOVERY; RELAXATION PROCESSES; SIGNAL PROCESSING;

EID: 84919948669     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (125)

References (39)
  • 6
    • 84919949179 scopus 로고    scopus 로고
    • Tensor decomposition for fast latent- variable PCFG parsing
    • Cohen, S. B. and Collins, M. Tensor decomposition for fast latent- variable PCFG parsing. In NIPS, 2012.
    • (2012) NIPS
    • Cohen, S.B.1    Collins, M.2
  • 7
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D. Compressed sensing. IEEE Trans. Info. Theory, 52 (4):1289-1306, 2006.
    • (2006) IEEE Trans. Info. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 10
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low- n-rank tensor recovery via convex optimization
    • Gandy, S., Recht, B., and Yamada, I. Tensor completion and low- n-rank tensor recovery via convex optimization. Inverse Problems, 27(2):025010, 2011.
    • (2011) Inverse Problems , vol.27 , Issue.2 , pp. 025010
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 12
    • 79951886985 scopus 로고    scopus 로고
    • Recovering low-rank matrices from few coefficients in any basis
    • Gross, D. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Info. Theory, 57(3): 1548-1566, 2011.
    • (2011) IEEE Trans. Info. Theory , vol.57 , Issue.3 , pp. 1548-1566
    • Gross, D.1
  • 13
    • 84891614753 scopus 로고    scopus 로고
    • Most tensor problems are np-hard
    • Hillar, C. and Lim, L. Most tensor problems are np-hard. Journal of the ACM (JACM), 60(6):45, 2013.
    • (2013) Journal of the ACM (JACM) , vol.60 , Issue.6 , pp. 45
    • Hillar, C.1    Lim, L.2
  • 16
    • 84897524603 scopus 로고    scopus 로고
    • Revisiting frank-wolfe: Projection-free sparse convex optimization
    • Jaggi, M. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML, 2013.
    • (2013) ICML
    • Jaggi, M.1
  • 17
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • Kolda, T. and Bader, B. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.1    Bader, B.2
  • 18
    • 84890508006 scopus 로고    scopus 로고
    • Nuclear norm minimization and tensor completion in exploration seismology
    • Kreimer, N., Stanton, A. and Sacchi, M. D. Nuclear norm minimization and tensor completion in exploration seismology. In ICASSP, 2013.
    • (2013) ICASSP
    • Kreimer, N.1    Stanton, A.2    Sacchi, M.D.3
  • 19
    • 78651077838 scopus 로고    scopus 로고
    • Tensor completion for on-board compression of hyperspectral images
    • Li, N. and Li, B. Tensor completion for on-board compression of hyperspectral images. In ICIP, 2010.
    • (2010) ICIP
    • Li, N.1    Li, B.2
  • 20
    • 84877262652 scopus 로고    scopus 로고
    • Optimum subspace learning and error correction for tensors
    • Li, Y., Yan, J., Zhou, Y., and Yang, J. Optimum subspace learning and error correction for tensors. In ECCV, 2010.
    • (2010) ECCV
    • Li, Y.1    Yan, J.2    Zhou, Y.3    Yang, J.4
  • 22
    • 84897478152 scopus 로고    scopus 로고
    • Robust structural metric learning
    • Lim, D., McFee, B., and Lanckriet, G. Robust structural metric learning. In ICML, 2013.
    • (2013) ICML
    • Lim, D.1    McFee, B.2    Lanckriet, G.3
  • 24
    • 85100063855 scopus 로고    scopus 로고
    • Tensor completion for estimating missing values in visual data
    • Liu, J., Musialski, P., Wonka, P., and Ye, J. Tensor completion for estimating missing values in visual data. In ICCV, 2009.
    • (2009) ICCV
    • Liu, J.1    Musialski, P.2    Wonka, P.3    Ye, J.4
  • 26
    • 34047272330 scopus 로고    scopus 로고
    • Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations
    • Mesgarani, N., Slaney, M., and Shamma, S.A. Discrimination of speech from nonspeech based on multiscale spectro-temporal modulations. IEEE Trans. Audio, Speech, and Language Pro-cessing, 14(3):920-930, 2006.
    • (2006) IEEE Trans. Audio, Speech, and Language Processing , vol.14 , Issue.3 , pp. 920-930
    • Mesgarani, N.1    Slaney, M.2    Shamma, S.A.3
  • 27
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of m-estimators with decomposable regularizes
    • Negahban, S., Ravikumar, P., Wainwright, M., and Yu, B. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizes. Stat. Sci., 27(4):528-557, 2012.
    • (2012) Stat. Sci. , vol.27 , Issue.4 , pp. 528-557
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.3    Yu, B.4
  • 28
    • 79953814105 scopus 로고    scopus 로고
    • Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar
    • Nion, D. and Sidiropoulos, N. Tensor algebra and multidimensional harmonic retrieval in signal processing for mimo radar. IEEE Trans, on Signal Processing, 58(11):5693-5705, 2010.
    • (2010) IEEE Trans, on Signal Processing , vol.58 , Issue.11 , pp. 5693-5705
    • Nion, D.1    Sidiropoulos, N.2
  • 30
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm mini-mization
    • Recht, B., Fazel, M., and Parrilo, P. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 31
    • 84897520091 scopus 로고    scopus 로고
    • Intersecting singularities for multi-structured estimation
    • Richard, E., Bach, F., and Vert, J. Intersecting singularities for multi-structured estimation. In ICML, 2013.
    • (2013) ICML
    • Richard, E.1    Bach, F.2    Vert, J.3
  • 32
    • 84898929494 scopus 로고    scopus 로고
    • A new convex relaxation for tensor completion
    • Romera-Paredes, B. and Pontil, M. A new convex relaxation for tensor completion. In NIPS, 2013.
    • (2013) NIPS
    • Romera-Paredes, B.1    Pontil, M.2
  • 36
    • 84894640150 scopus 로고    scopus 로고
    • Learning with tensors: A framework based on convex optimization and spectral regularization
    • Signoretto, M., Tran Dinh, Q., Lathauwer, L., and Suykens, J. Learning with tensors: A framework based on convex optimization and spectral regularization. Machine Learning, pp. 1-49, 2013.
    • (2013) Machine Learning , pp. 1-49
    • Signoretto, M.1    Tran Dinh, Q.2    Lathauwer, L.3    Suykens, J.4
  • 37
    • 85162510548 scopus 로고    scopus 로고
    • Statistical performance of convex tensor decomposition
    • Tomioka, R., Suzuki, T., Hayashi, K., and Kashima, H. Statistical performance of convex tensor decomposition. In NIPS, 2011.
    • (2011) NIPS
    • Tomioka, R.1    Suzuki, T.2    Hayashi, K.3    Kashima, H.4
  • 38
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • Tucker, L. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279-311, 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.