메뉴 건너뛰기




Volumn 54, Issue 2-3, 2013, Pages 428-453

Accelerated linearized Bregman method

Author keywords

Accelerated linearized Bregman method; Basis pursuit; Compressed sensing; Convex optimization; Linearized Bregman method; Matrix completion

Indexed keywords

BASIS PURSUITS; BREGMAN METHODS; COMPUTATIONAL EFFORT; GRADIENT DESCENT METHOD; MATRIX COMPLETION; MATRIX COMPLETION PROBLEMS; NUMERICAL RESULTS; SPARSE OPTIMIZATIONS;

EID: 84875960294     PISSN: 08857474     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10915-012-9592-9     Document Type: Article
Times cited : (62)

References (46)
  • 1
    • 0001531895 scopus 로고
    • Two point step size gradient methods
    • Barzilai, J., Borwein, J.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141-148 (1988)
    • (1988) IMA J. Numer. Anal. , vol.8 , pp. 141-148
    • Barzilai, J.1    Borwein, J.2
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183-202 (2009)
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 84856004485 scopus 로고    scopus 로고
    • Templates for convex cone problems with applications to sparse signal recovery
    • Becker, S., Candès, E. J., Grant, M.: Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3, 165-218 (2011)
    • (2011) Math. Program. Comput. , vol.3 , pp. 165-218
    • Becker, S.1    Candès, E.J.2    Grant, M.3
  • 5
    • 49949144765 scopus 로고
    • The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming
    • Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. U. S. S. R. Comput. Math. Math. Phys. 7, 200-217 (1967)
    • (1967) U. S. S. R. Comput. Math. Math. Phys. , vol.7 , pp. 200-217
    • Bregman, L.1
  • 6
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai, J., Candès, E. J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956-1982 (2010)
    • (2010) SIAM J. Optim. , vol.20 , pp. 1956-1982
    • Cai, J.1    Candès, E.J.2    Shen, Z.3
  • 7
    • 67349244805 scopus 로고    scopus 로고
    • Linearized Bregman iterations for compressed sensing
    • Cai, J.-F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78, 1515-1536 (2009)
    • (2009) Math. Comput. , vol.78 , pp. 1515-1536
    • Cai, J.-F.1    Osher, S.2    Shen, Z.3
  • 8
    • 70349984018 scopus 로고    scopus 로고
    • Convergence of the linearized Bregman iteration for 1-norm minimization
    • Cai, J.-F., Osher, S., Shen, Z.: Convergence of the linearized Bregman iteration for 1-norm minimization. Math. Comput. 78, 2127-2136 (2009)
    • (2009) Math. Comput. , vol.78 , pp. 2127-2136
    • Cai, J.-F.1    Osher, S.2    Shen, Z.3
  • 9
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization
    • Candès, E. J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717-772 (2009)
    • (2009) Found. Comput. Math. , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 10
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • Candès, E. J., Tao, T: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053-2080 (2009)
    • (2009) IEEE Trans. Inf. Theory , vol.56 , pp. 2053-2080
    • Candès, E.J.1    Tao, T.2
  • 11
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Candès, E. J., Romberg, J., Tao, T: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489-509 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 489-509
    • Candès, E.J.1    Romberg, J.2    Tao, T.3
  • 12
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289-1306 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 13
    • 56749091502 scopus 로고    scopus 로고
    • Exact regularization of convex programs
    • Friedlander, M. P, Tseng, P.: Exact regularization of convex programs. SIAM J. Optim. 18, 1326-1350 (2007)
    • (2007) SIAM J. Optim. , vol.18 , pp. 1326-1350
    • Friedlander, M.P.1    Tseng, P.2
  • 14
    • 78149326259 scopus 로고    scopus 로고
    • Fast multiple splitting algorithms for convex optimization
    • Department of IEOR, Columbia University, Preprint
    • Goldfarb, D., Ma, S.: Fast multiple splitting algorithms for convex optimization. Tech. report, Department of IEOR, Columbia University (2009). Preprint, available at http://arxiv.org/abs/0912.4570
    • (2009) Tech. Report
    • Goldfarb, D.1    Ma, S.2
  • 15
    • 79952483985 scopus 로고    scopus 로고
    • Convergence of fixed point continuation algorithms for matrix rank minimization
    • Goldfarb, D., Ma, S.: Convergence of fixed point continuation algorithms for matrix rank minimization. Found. Comput. Math. 11, 183-210 (2011)
    • (2011) Found. Comput. Math. , vol.11 , pp. 183-210
    • Goldfarb, D.1    Ma, S.2
  • 16
    • 84884671324 scopus 로고    scopus 로고
    • Fast alternating linearization methods for minimizing the sum of two convex functions
    • doi:10.1007/s10107-012-0530-2
    • Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. Ser. A (2012). doi:10.1007/s10107-012-0530-2
    • (2012) Math. Program. Ser. A
    • Goldfarb, D.1    Ma, S.2    Scheinberg, K.3
  • 18
    • 79951886985 scopus 로고    scopus 로고
    • Recovering low-rank matrices from few coefficients in any basis
    • Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57, 1548-1566 (2011)
    • (2011) IEEE Trans. Inf. Theory , vol.57 , pp. 1548-1566
    • Gross, D.1
  • 19
    • 69649095451 scopus 로고    scopus 로고
    • Fixed-point continuation for l1-minimization: Methodology and convergence
    • Hale, E. T., Yin, W., Zhang, Y.: Fixed-point continuation for l1-minimization: methodology and convergence. SIAM J. Optim. 19, 1107-1130 (2008)
    • (2008) SIAM J. Optim. , vol.19 , pp. 1107-1130
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 20
    • 0014604308 scopus 로고
    • Multiplier and gradient methods
    • Hestenes, M. R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303-320 (1969)
    • (1969) J. Optim. Theory Appl. , vol.4 , pp. 303-320
    • Hestenes, M.R.1
  • 21
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D. C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program., Ser. B 45, 503-528 (1989)
    • (1989) Math. Program., Ser. B , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 22
    • 84862272060 scopus 로고    scopus 로고
    • An implementable proximal point algorithmic framework for nuclear norm minimization
    • doi:10.1007/s10107-010-0437-8
    • Liu, Y, Sun, D., Toh, K.-C: An implementable proximal point algorithmic framework for nuclear norm minimization. Math. Program. (2011). doi:10.1007/s10107-010-0437-8
    • (2011) Math. Program.
    • Liu, Y.1    Sun, D.2    Toh, K.-C.3
  • 23
    • 79957957723 scopus 로고    scopus 로고
    • Fixed point and Bregman iterative methods for matrix rank minimization
    • Ma, S., Goldfarb, D., Chen, L.: Fixed point and Bregman iterative methods for matrix rank minimization. Math. Program., Ser. A 128, 321-353 (2011)
    • (2011) Math. Program., Ser. A , vol.128 , pp. 321-353
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 24
  • 25
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan, B. K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227-234 (1995)
    • (1995) SIAM J. Comput. , vol.24 , pp. 227-234
    • Natarajan, B.K.1
  • 26
    • 14944353419 scopus 로고    scopus 로고
    • Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems
    • Nemirovski, A.: Prox-method with rate of convergence O (1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229-251 (2005)
    • (2005) SIAM J. Optim. , vol.15 , pp. 229-251
    • Nemirovski, A.1
  • 27
    • 34548480020 scopus 로고
    • A method for unconstrained convex minimization problem with the rate of convergence 0 (1/k)
    • Nesterov, Y. E.: A method for unconstrained convex minimization problem with the rate of convergence 0 (1/k). Dokl. Akad. Nauk SSSR 269, 543-547 (1983)
    • (1983) Dokl. Akad. Nauk SSSR , vol.269 , pp. 543-547
    • Nesterov, Y.E.1
  • 29
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization for non-smooth functions
    • Nesterov, Y. E.: Smooth minimization for non-smooth functions. Math. Program., Ser. A 103, 127-152 (2005)
    • (2005) Math. Program., Ser. A , vol.103 , pp. 127-152
    • Nesterov, Y.E.1
  • 31
    • 19844370110 scopus 로고    scopus 로고
    • An iterative regularization method for total variationbased image restoration
    • Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variationbased image restoration. Multiscale Model. Simul. 4, 460-489 (2005)
    • (2005) Multiscale Model. Simul. , vol.4 , pp. 460-489
    • Osher, S.1    Burger, M.2    Goldfarb, D.3    Xu, J.4    Yin, W.5
  • 32
    • 77349126814 scopus 로고    scopus 로고
    • Fast linearized Bregman iteration for compressive sensing and sparse denoising
    • Osher, S., Mao, Y, Dong, B., Yin, W.: Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun. Math. Sci. 8, 93-111 (2010)
    • (2010) Commun. Math. Sci. , vol.8 , pp. 93-111
    • Osher, S.1    Mao, Y.2    Dong, B.3    Yin, W.4
  • 33
    • 0002380692 scopus 로고
    • A method for nonlinear constraints in minimization problems
    • Fletcher, R. ed., Academic Press, New York
    • Powell, M. J. D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283-298. Academic Press, New York (1972)
    • (1972) Optimization , pp. 283-298
    • Powell, M.J.D.1
  • 34
    • 84856009825 scopus 로고    scopus 로고
    • A simpler approach to matrix completion
    • Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413-3430 (2011)
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 3413-3430
    • Recht, B.1
  • 35
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52, 471-501 (2010)
    • (2010) SIAM Rev. , vol.52 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 36
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton
    • Rockafellar, R. T.: Convex Analysis. Princeton University Press, Princeton (1970)
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 37
    • 0016950796 scopus 로고
    • Augmented Lagrangians and applications of the proximal point algorithm in convex programming
    • Rockafellar, R. T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97-116 (1976)
    • (1976) Math. Oper. Res. , vol.1 , pp. 97-116
    • Rockafellar, R.T.1
  • 38
    • 84893690532 scopus 로고    scopus 로고
    • Proceedings
    • ACM SIGKDD and Netflix: In: Proceedings of kdd Cup and Workshop, Proceedings available online at http://www.cs.uic.edu/~liub/KDD-cup-2007/ proceedings.html (2012)
    • (2012) Proceedings of Kdd Cup and Workshop
  • 41
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • Toh, K.-C, Yun, S.: An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pac. J. Optim. 6, 615-640 (2010)
    • (2010) Pac. J. Optim. , vol.6 , pp. 615-640
    • Toh, K.-C.1    Yun, S.2
  • 42
    • 70049111607 scopus 로고    scopus 로고
    • On accelerated proximal gradient methods for convex-concave optimization
    • submitted
    • Tseng, P.: On accelerated proximal gradient methods for convex-concave optimization. SIAM J. Optim. (2008, submitted)
    • (2008) SIAM J. Optim.
    • Tseng, P.1
  • 43
    • 65649137930 scopus 로고    scopus 로고
    • Probing the Pareto frontier for basis pursuit solutions
    • Van Den Berg, E., Friedlander, M. P: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890-912 (2008)
    • (2008) SIAM J. Sci. Comput. , vol.31 , pp. 890-912
    • Van Den Berg, E.1    Friedlander, M.P.2
  • 44
    • 79951629197 scopus 로고    scopus 로고
    • Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
    • Department of CAAM, Rice University
    • Wen, Z., Yin, W, Zhang, Y: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Technical Report, Department of CAAM, Rice University (2010)
    • (2010) Technical Report
    • Wen, Z.1    Yin, W.2    Zhang, Y.3
  • 45
    • 78651547900 scopus 로고    scopus 로고
    • Analysis and generalizations of the linearized Bregman method
    • Yin, W: Analysis and generalizations of the linearized Bregman method. SIAM J. Imaging Sci. 3, 856-877 (2010)
    • (2010) SIAM J. Imaging Sci. , vol.3 , pp. 856-877
    • Yin, W.1
  • 46
    • 84977895355 scopus 로고    scopus 로고
    • Bregman iterative algorithms for I1-minimization with applications to compressed sensing
    • Yin, W, Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for I1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1, 143-168 (2008)
    • (2008) SIAM J. Imaging Sci. , vol.1 , pp. 143-168
    • Yin, W.1    Osher, S.2    Goldfarb, D.3    Darbon, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.