메뉴 건너뛰기




Volumn , Issue , 2014, Pages 3564-3569

Optimization-based extreme learning machine with multi-kernel learning approach for classification

Author keywords

Extreme learning machine (ELM); Multi kernel extreme learning machine (MK ELM); Multi kernel learning (MKL); Optimization based ELM; SimpleMKL

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; GRADIENT METHODS; KNOWLEDGE ACQUISITION; MULTILAYER NEURAL NETWORKS; OPTIMIZATION; PATTERN RECOGNITION; SUPPORT VECTOR MACHINES;

EID: 84919934813     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2014.613     Document Type: Conference Paper
Times cited : (16)

References (34)
  • 2
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, "Extreme learning machine: theory and applications," Neurocomputing, 2006, 70(1): 489-501
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 3
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.-B. Huang, L. Chen, C.-K. Siew, "Universal approximation using incremental constructive feedforward networks with random hidden nodes," IEEE Trans. on Neural Networks, 2006, 17(4): 879-892
    • (2006) IEEE Trans. on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 7
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schoelkopf, A. Smola, K. R. Muller, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comp., 1998, 10(5): 1299-1319
    • (1998) Neural Comp. , vol.10 , Issue.5 , pp. 1299-1319
    • Schoelkopf, B.1    Smola, A.2    Muller, K.R.3
  • 10
    • 33750379440 scopus 로고    scopus 로고
    • Non-flat function estimation with a multi-scale support vector regession
    • D.-N. Zheng, J.-X. Wang, Y.-N. Zhao, "Non-flat function estimation with a multi-scale support vector regession," Neurocomputing, 2006, 70 (1-3): 420-429
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 420-429
    • Zheng, D.-N.1    Wang, J.-X.2    Zhao, Y.-N.3
  • 18
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • G.-B. Huang, X. Ding, H. Zhou, "Optimization method based extreme learning machine for classification," Neurocomputing, 2010, 74(1): 155-163
    • (2010) Neurocomputing , vol.74 , Issue.1 , pp. 155-163
    • Huang, G.-B.1    Ding, X.2    Zhou, H.3
  • 19
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P. L. Bartlett, "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network," IEEE Trans. on Information Theory, 1998, 44(2): 525-536
    • (1998) IEEE Trans. on Information Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 21
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang, L. Chen, "Convex incremental extreme learning machine," Neurocomputing, 2007, 70(16): 3056-3062
    • (2007) Neurocomputing , vol.70 , Issue.16 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 22
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.-B. Huang, L. Chen, "Enhanced random search based incremental extreme learning machine," Neurocomputing, 2008, 71(16): 3460-3468
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 25
    • 0032096712 scopus 로고    scopus 로고
    • Optimization problems with perturbations: A guided tour
    • J. F. Bonnans, A. Shapiro. "Optimization problems with perturbations: A guided tour," SIAM review, 1998, 40(2): 228-264
    • (1998) SIAM Review , vol.40 , Issue.2 , pp. 228-264
    • Bonnans, J.F.1    Shapiro, A.2
  • 26
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine learning, 2002, 46(1-3): 131-159
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 27
    • 0040165092 scopus 로고    scopus 로고
    • Practical aspects of the moreau-yosida regularization: Theoretical preliminaries
    • C. Lemarechal, C. Sagastizabal. "Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries," SIAM Journal on Optimization, 1997, 7(2): 367-385
    • (1997) SIAM Journal on Optimization , vol.7 , Issue.2 , pp. 367-385
    • Lemarechal, C.1    Sagastizabal, C.2
  • 29
    • 84919899232 scopus 로고    scopus 로고
    • Optimisation continue: Cours et problemes corriges
    • J. F. Bonnans, F. Bonnans, "Optimisation continue: cours et problemes corriges," Dunod, 2006
    • (2006) Dunod
    • Bonnans, J.F.1    Bonnans, F.2
  • 31
    • 9444279208 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Univ. California, Irvine, CA
    • C. L. Blake, C. J. Merz, "UCI Repository of Machine Learning Databases," Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, 1998. Available: http://www. ics. uci. edu/-mlearn/MLRepository. html
    • (1998) Dept. Inf. Comput. Sci
    • Blake, C.L.1    Merz, C.J.2
  • 32
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for highdimensional genomic microarray data
    • E.-P. Xing, M. I. Jordan, R. M. Karp, "Feature selection for highdimensional genomic microarray data", ICML, 2001, 1: 601-608
    • (2001) ICML , vol.1 , pp. 601-608
    • Xing, E.-P.1    Jordan, M.I.2    Karp, R.M.3
  • 34
    • 64149128446 scopus 로고    scopus 로고
    • NEUROSVM: An architecture to reduce the effect ofthe choice of kernel on the performance of svm
    • P. Ghanty, S. Paul, N. R. Pal, "NEUROSVM: An architecture to reduce the effect ofthe choice of kernel on the performance of svm," Journal of Machine Learning Research, 2009, 10: 591-622.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 591-622
    • Ghanty, P.1    Paul, S.2    Pal, N.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.