-
1
-
-
77949503812
-
A fast hybrid algorithm for large-scale l1-regularized logistic regression
-
Mar
-
J. Shi, W. Yin, S. Osher, and P. Sajda, "A fast hybrid algorithm for large-scale l1-regularized logistic regression," J. Mach. Learn. Res., vol. 11, pp. 713-741, Mar. 2010. [Online]. Available: http://dl. Acm. org/citation. cfm?id=1756006. 1756029
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 713-741
-
-
Shi, J.1
Yin, W.2
Osher, S.3
Sajda, P.4
-
2
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, Series B, vol. 58, pp. 267-288, 1994.
-
(1994)
Journal of the Royal Statistical Society, Series B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
3
-
-
14344249889
-
Feature selection, l1 vs l2 regularization, and rotational invariance
-
New York, NY, USA: ACM
-
A. Y. Ng, "Feature selection, l1 vs. l2 regularization, and rotational invariance," in Proceedings of the Twenty-first International Conference on Machine Learning, ser. ICML '04. New York, NY, USA: ACM, 2004, pp. pp. 78-85.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning, Ser. ICML '04
, pp. 78-85
-
-
Ng, A.Y.1
-
4
-
-
80052416457
-
Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty
-
Suntec, Singapore: Association for Computational Linguistics, August
-
Y. Tsuruoka, J. Tsujii, and S. Ananiadou, "Stochastic gradient descent training for l1-regularized log-linear models with cumulative penalty," in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP. Suntec, Singapore: Association for Computational Linguistics, August 2009, pp. 477-485. [Online]. Available: http://www. Aclweb. org/anthology/P/P09/P09-1054
-
(2009)
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP
, pp. 477-485
-
-
Tsuruoka, Y.1
Tsujii, J.2
Ananiadou, S.3
-
5
-
-
17444425307
-
On-line learning for very large data sets
-
Mar.
-
L. Bottou and Y. Le Cun, "On-line learning for very large data sets," Appl. Stoch. Model. Bus. Ind., vol. 21, no. 2, pp. 137-151, Mar. 2005. Available: http://dx. doi. org/10. 1002/asmb. v21:2
-
(2005)
Appl. Stoch. Model. Bus. Ind.
, vol.21
, Issue.2
, pp. 137-151
-
-
Bottou, L.1
Le Cun, Y.2
-
6
-
-
48849085774
-
The tradeoffs of large scale learning
-
L. Bottou and O. Bousquet, "The tradeoffs of large scale learning," in NIPS, 2007.
-
(2007)
NIPS
-
-
Bottou, L.1
Bousquet, O.2
-
7
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. H. Friedman, T. Hastie, and R. Tibshirani, "Regularization paths for generalized linear models via coordinate descent," Journal of Statistical Software, vol. 33, no. 1, pp. 1-22, 2 2010. [Online]. Available: http://www. jstatsoft. org/v33/i01
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1-2
, pp. 1-22
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
80052652053
-
An improved glmnet for l1-regularized logistic regression
-
New York, NY, USA: ACM
-
G.-X. Yuan, C.-H. Ho, and C.-J. Lin, "An improved glmnet for l1-regularized logistic regression," in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, ser. KDD '11. New York, NY, USA: ACM, 2011, pp. 33-41.: http://doi. Acm. org/10. 1145/2020408. 2020421
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Ser. KDD '11
, pp. 33-41
-
-
Yuan, G.-X.1
Ho, C.-H.2
Lin, C.-J.3
-
9
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Annals of Statistics, vol. 32, pp. 407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
10
-
-
34547984768
-
Scalable training of l1-regularized log-linear models
-
New York, NY, USA: ACM
-
G. Andrew and J. Gao, "Scalable training of l1-regularized log-linear models," in Proceedings of the 24th international conference on Machine learning, ser. ICML '07. New York, NY, USA: ACM, 2007, pp. 33-40. [Online]. Available: http://doi. Acm. org/10. 1145/1273496. 1273501
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, Ser. ICML '07
, pp. 33-40
-
-
Andrew, G.1
Gao, J.2
-
11
-
-
34547966875
-
Efficient l1 regularized logistic regression
-
S. in Lee, H. Lee, P. Abbeel, and A. Y. Ng, "Efficient l1 regularized logistic regression," in In AAAI-06, 2006.
-
(2006)
AAAI-06
-
-
In Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.Y.4
-
12
-
-
34547688865
-
An interior-point method for large-scale l1-regularized logistic regression
-
Dec
-
K. Koh, S.-J. Kim, and S. Boyd, "An interior-point method for large-scale l1-regularized logistic regression," J. Mach. Learn. Res., vol. 8, pp. 1519-1555, Dec. 2007. [Online]. Available: http://dl. Acm. org/citation. cfm?id=1314498. 1314550
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 1519-1555
-
-
Koh, K.1
Kim, S.-J.2
Boyd, S.3
-
13
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society, Series B, vol. 67, pp. 301-320, 2005.
-
(2005)
Journal of the Royal Statistical Society, Series B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
15
-
-
64149115569
-
Sparse online learning via truncated gradient
-
Jun.
-
J. Langford, L. Li, and T. Zhang, "Sparse online learning via truncated gradient," J. Mach. Learn. Res., vol. 10, pp. 777-801, Jun. 2009. Available: http://dl. Acm. org/citation. cfm?id=1577069. 1577097
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 777-801
-
-
Langford, J.1
Li, L.2
Zhang, T.3
-
16
-
-
0032361278
-
Penalized regressions: The bridge versus the lasso
-
W. J. Fu, "Penalized regressions: The bridge versus the lasso," Journal of Computational and Graphical Statistics, vol. 7, no. 3, pp. pp. 397-416, 1998. [Online]. Available: http://www. jstor. org/stable/1390712
-
(1998)
Journal of Computational and Graphical Statistics
, vol.7
, Issue.3
, pp. 397-416
-
-
Fu, W.J.1
-
17
-
-
0035533631
-
Convergence of a block coordinate descent method for nondifferentiable minimization
-
P. Tseng and C. O. L. Mangasarian, "Convergence of a block coordinate descent method for nondifferentiable minimization," J. Optim Theory Appl, pp. 475-494, 2001.
-
(2001)
J. Optim Theory Appl
, pp. 475-494
-
-
Tseng, P.1
Mangasarian, C.O.L.2
-
18
-
-
79551500651
-
A comparison of optimization methods and software for large-scale l1-regularized linear classification
-
December
-
G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-J. Lin, "A comparison of optimization methods and software for large-scale l1-regularized linear classification," J. Mach. Learn. Res., vol. 9999, pp. 3183-3234, December 2010. [Online]. Available: http://dl. Acm. org/citation. cfm?id= 1953011. 1953034
-
(2010)
J. Mach. Learn. Res.
, vol.9999
, pp. 3183-3234
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
-
19
-
-
80053451705
-
Parallel coordinate descent for l1-regularized loss minimization
-
Bellevue, Washington, June
-
J. K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin, "Parallel coordinate descent for l1-regularized loss minimization," in International Conference on Machine Learning (ICML 2011), Bellevue, Washington, June 2011.
-
(2011)
International Conference on Machine Learning (ICML 2011)
-
-
Bradley, J.K.1
Kyrola, A.2
Bickson, D.3
Guestrin, C.4
-
20
-
-
1342332031
-
A tutorial on mm algorithms
-
D. R. Hunter, K. Lange, D. O. Biomathematics, and H. Genetics, "A tutorial on mm algorithms," Amer. Statist, pp. 30-37, 2004.
-
(2004)
Amer. Statist
, pp. 30-37
-
-
Hunter, D.R.1
Lange, K.2
Biomathematics, D.O.3
Genetics, H.4
-
24
-
-
38049108135
-
Fast optimization methods for l1 regularization: A comparative study and two new approaches
-
Berlin, Heidelberg: Springer-Verlag
-
M. Schmidt, G. Fung, and R. Rosales, "Fast optimization methods for l1 regularization: A comparative study and two new approaches," in Proceedings of the 18th European Conference on Machine Learning, ser. ECML '07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 286-297.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning, Ser. ECML '07
, pp. 286-297
-
-
Schmidt, M.1
Fung, G.2
Rosales, R.3
-
25
-
-
85161967549
-
Parallelized stochastic gradient descent
-
J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds.
-
M. Zinkevich, M. Weimer, A. Smola, and L. Li, "Parallelized stochastic gradient descent," in Advances in Neural Information Processing Systems 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, Eds., 2010, pp. 2595-2603.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 2595-2603
-
-
Zinkevich, M.1
Weimer, M.2
Smola, A.3
Li, L.4
-
26
-
-
2442439081
-
Genetic programming for data classification: Partitioning the search space
-
J. Eggermont, J. N. Kok, and W. A. Kosters, "Genetic programming for data classification: partitioning the search space," in SAC, 2004, p. 1001.
-
(2004)
SAC
, pp. 1001
-
-
Eggermont, J.1
Kok, J.N.2
Kosters, W.A.3
|