메뉴 건너뛰기




Volumn 19, Issue 1, 2012, Pages 68-82

A hybrid BPSO-CGA approach for gene selection and classification of microarray data

Author keywords

feature selection; genetic algorithm; K nearest neighbor; microarray; particle swarm optimization

Indexed keywords

ALGORITHM; ARTICLE; BIOLOGY; CLASSIFICATION; CLUSTER ANALYSIS; DNA MICROARRAY; GENE EXPRESSION; GENE EXPRESSION PROFILING; GENETIC DATABASE; GENETIC SELECTION; GENETIC VARIABILITY; GENETICS; HUMAN; METHODOLOGY;

EID: 84855461005     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2010.0064     Document Type: Article
Times cited : (56)

References (44)
  • 1
    • 34047249450 scopus 로고    scopus 로고
    • Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation
    • DOI 10.1016/j.asoc.2006.10.002, PII S1568494606000652
    • AltIncay, H. 2007. Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation. Applied Soft Computing 7, 1072-1083. (Pubitemid 46551937)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 1072-1083
    • Altincay, H.1
  • 2
    • 33644955251 scopus 로고    scopus 로고
    • Instance-based concept learning from multiclass DNA microarray data
    • Berrar, D., Bradbury, I., and Dubitzky, W. 2006. Instance-based concept learning from multiclass DNA microarray data. BMC Bioinformatics 7, 73.
    • (2006) BMC Bioinformatics , vol.7 , pp. 73
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 4
    • 32144457149 scopus 로고    scopus 로고
    • PCP: A program for supervised classification of gene expression profiles
    • Buturovic, L.J. 2006. PCP: a program for supervised classification of gene expression profiles. Bioinformatics 22, 245.
    • (2006) Bioinformatics , vol.22 , pp. 245
    • Buturovic, L.J.1
  • 5
    • 18844483267 scopus 로고    scopus 로고
    • The promise of microarrays in the management and treatment of breast cancer
    • Chang, J.C., Hilsenbeck, S.G., and Fuqua, S.A.W. 2005. The promise of microarrays in the management and treatment of breast cancer. Breast Cancer Res. 7, 100.
    • (2005) Breast Cancer Res. , vol.7 , pp. 100
    • Chang, J.C.1    Hilsenbeck, S.G.2    Fuqua, S.A.W.3
  • 6
    • 33645314062 scopus 로고    scopus 로고
    • Genetic test bed for feature selection
    • Choudhary, A., Brun, M., Hua, J., et al. 2006. Genetic test bed for feature selection. Bioinformatics 22, 837.
    • (2006) Bioinformatics , vol.22 , pp. 837
    • Choudhary, A.1    Brun, M.2    Hua, J.3
  • 7
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover, T., and Hart, P. 1967. Nearest neighbor pattern classification. IEEE Trans. Information Theory 13, 21-27.
    • (1967) IEEE Trans. Information Theory , vol.13 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 9
    • 0037255041 scopus 로고    scopus 로고
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction
    • Deutsch, J.M. 2003. Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics 19, 45.
    • (2003) Bioinformatics , vol.19 , pp. 45
    • Deutsch, J.M.1
  • 10
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte, R., and de Andres, A. 2006. Gene selection and classification of microarray data using Random Forest. BMC bioinformatics 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    De Andres, A.2
  • 11
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T.P. 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 12
    • 0035300462 scopus 로고    scopus 로고
    • Evolutionary algorithm with modifications in the reproduction phase
    • DOI 10.1049/ip-sen:20010503
    • Eksin, I., and Erol, O.K. 2001. Evolutionary algorithm with modifications in the reproduction phase. IEE Proc. Software 148, 75-80. (Pubitemid 32672350)
    • (2001) IEE Proceedings: Software , vol.148 , Issue.2 , pp. 75-80
    • Eksin, I.1    Erol, O.K.2
  • 13
    • 27544500819 scopus 로고    scopus 로고
    • A new optimization method: Big Bang-Big Crunch
    • DOI 10.1016/j.advengsoft.2005.04.005, PII S0965997805000827
    • Erol, O.K., and Eksin, I. 2006. A new optimization method: big bang-big crunch. Adv. Eng. Software 37, 106-111. (Pubitemid 41543030)
    • (2006) Advances in Engineering Software , vol.37 , Issue.2 , pp. 106-111
    • Erol, O.K.1    Eksin, I.2
  • 14
    • 22944478488 scopus 로고
    • Discriminatory analysis. Nonparametric discrimination: Consistency properties
    • Fix, E., and Hodges, Jr., J.L. 1989. Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev. 57, 238-247.
    • (1989) Int. Stat. Rev. , vol.57 , pp. 238-247
    • Fix, E.1    Hodges Jr., J.L.2
  • 15
    • 0034662603 scopus 로고    scopus 로고
    • Comparative genomic hybridization analysis of 38 breast cancer cell lines: A basis for interpreting complementary DNA microarray data
    • Forozan, F., Mahlamaki, E.H., Monni, O., et al. 2000. Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data. Cancer Res. 60, 4519.
    • (2000) Cancer Res. , vol.60 , pp. 4519
    • Forozan, F.1    Mahlamaki, E.H.2    Monni, O.3
  • 16
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T.S., Cristianini, N., Duffy, N., et al. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906.
    • (2000) Bioinformatics , vol.16 , pp. 906
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3
  • 17
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie, T., Tibshirani, R., Friedman, J., et al. 2005. The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27, 83-85.
    • (2005) The Mathematical Intelligencer , vol.27 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 19
    • 17544364191 scopus 로고    scopus 로고
    • Optimal number of features as a function of sample size for various classification rules
    • Hua, J., Xiong, Z., Lowey, J., et al. 2005. Optimal number of features as a function of sample size for various classification rules. Bioinformatics 21, 1509.
    • (2005) Bioinformatics , vol.21 , pp. 1509
    • Hua, J.1    Xiong, Z.2    Lowey, J.3
  • 20
    • 34548379115 scopus 로고    scopus 로고
    • ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data
    • Huang, H.L., and Chang, F.L. 2007. ESVM: evolutionary support vector machine for automatic feature selection and classification of microarray data. Biosystems 90, 516-528.
    • (2007) Biosystems , vol.90 , pp. 516-528
    • Huang, H.L.1    Chang, F.L.2
  • 22
    • 25444528447 scopus 로고    scopus 로고
    • Feature selection and classification for microarray data analysis: Evolutionary methods for identifying predictive genes
    • Jirapech-Umpai, T., and Aitken, S. 2005. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinformatics 6, 148.
    • (2005) BMC Bioinformatics , vol.6 , pp. 148
    • Jirapech-Umpai, T.1    Aitken, S.2
  • 23
    • 37249009707 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for multimodal functions
    • DOI 10.1016/j.asoc.2007.07.002, PII S1568494607000683
    • Kao, Y.T., and Zahara, E. 2008. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Computing 8, 849-857. (Pubitemid 350266482)
    • (2008) Applied Soft Computing Journal , vol.8 , Issue.2 , pp. 849-857
    • Kao, Y.-T.1    Zahara, E.2
  • 26
    • 0031352450 scopus 로고    scopus 로고
    • A discrete binary version of the particle swarm algorithm
    • Kennedy, J., and Eberhart, R.C. 1997. A discrete binary version of the particle swarm algorithm. IEEE Int. Conf. Syst. Man Cybernet. 5, 4104-4108.
    • (1997) IEEE Int. Conf. Syst. Man Cybernet. , vol.5 , pp. 4104-4108
    • Kennedy, J.1    Eberhart, R.C.2
  • 27
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee, J.W., Lee, J.B., Park, M., et al. 2005. An extensive comparison of recent classification tools applied to microarray data. Comput. Stat. Data Anal. 48, 869-885.
    • (2005) Comput. Stat. Data Anal. , vol.48 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3
  • 28
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by multicategory support vector machines using gene expression data
    • Lee, Y., and Lee, C.K. 2003. Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19, 1132.
    • (2003) Bioinformatics , vol.19 , pp. 1132
    • Lee, Y.1    Lee, C.K.2
  • 29
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li, T., Zhang, C., and Ogihara, M. 2004. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20, 2429.
    • (2004) Bioinformatics , vol.20 , pp. 2429
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 30
    • 25444528240 scopus 로고    scopus 로고
    • An entropy-based gene selection method for cancer classification using microarray data
    • Liu, X., Krishnan, A., and Mondry, A. 2005. An entropy-based gene selection method for cancer classification using microarray data. BMC Bioinformatics 6, 76.
    • (2005) BMC Bioinformatics , vol.6 , pp. 76
    • Liu, X.1    Krishnan, A.2    Mondry, A.3
  • 34
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy, S., Tamayo, P., Rifkin, R., et al. 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci. USA 98, 15149.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 15149
    • Ramaswamy, S.1    Tamayo, P.2    Rifkin, R.3
  • 36
    • 41449085604 scopus 로고    scopus 로고
    • Random Forests and nearest shrunken centroids for the classification of sensor array data
    • Sberveglieri, M.P.G. 2008. Random Forests and nearest shrunken centroids for the classification of sensor array data. Sensors Actuators B Chem. 131, 93-99.
    • (2008) Sensors Actuators B Chem. , vol.131 , pp. 93-99
    • Sberveglieri, M.P.G.1
  • 38
    • 26444605411 scopus 로고    scopus 로고
    • MA|PM: Memetic algorithms with population management
    • DOI 10.1016/j.cor.2004.09.011, PII S0305054804002345
    • Sorensen, K., and Sevaux, M. 2006. MAj PM: memetic algorithms with population management. Computers Operations Res. 33, 1214-1225. (Pubitemid 41428287)
    • (2006) Computers and Operations Research , vol.33 , Issue.5 , pp. 1214-1225
    • Sorensen, K.1    Sevaux, M.2
  • 39
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier
    • DOI 10.1016/j.patrec.2006.08.016, PII S0167865506002303
    • Tahir, M.A., Bouridane, A., and Kurugollu, F. 2007. Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier. Pattern Recogn. Lett. 28, 438-446. (Pubitemid 44918133)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 40
    • 29544433978 scopus 로고    scopus 로고
    • A novel prostate cancer classification technique using intermediate memory Tabu search
    • Tahir, M.A., Bouridane, A., Kurugollu, F., et al. 2005. A novel prostate cancer classification technique using intermediate memory tabu search. EURASIP J. Appl. Signal Processing 14, 2241.
    • (2005) EURASIP J. Appl. Signal Processing , vol.14 , pp. 2241
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 41
    • 28544439958 scopus 로고    scopus 로고
    • An effective refinement strategy for KNN text classifier
    • DOI 10.1016/j.eswa.2005.07.019, PII S0957417405001570
    • Tan, S. 2006. An effective refinement strategy for KNN text classifier. Expert Syst. Applications 30, 290-298. (Pubitemid 41745051)
    • (2006) Expert Systems with Applications , vol.30 , Issue.2 , pp. 290-298
    • Tan, S.1
  • 42
    • 0037076272 scopus 로고    scopus 로고
    • Diagnosis of multiple cancer types by shrunken centroids of gene expression
    • Tibshirani, R., Hastie, T., Narasimhan, B., et al. 2002. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. Natl. Acad. Sci. USA 99, 6567.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 6567
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3
  • 43
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • DOI 10.1016/j.patrec.2006.09.003, PII S0167865506002327
    • Wang, X., Yang, J., Teng, X., et al. 2007. Feature selection based on rough sets and particle swarm optimization. Pattern Recogn. Lett. 28, 459-471. (Pubitemid 44920436)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.4 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Jensen, R.5
  • 44
    • 33847646332 scopus 로고    scopus 로고
    • Wrapper-filter feature selection algorithm using a memetic framework
    • Zhu, Z., Ong, Y., and Dash, M. 2007. Wrapper-filter feature selection algorithm using a memetic framework. IEEE Trans. Syst. Man. Cybernet. B 37, 70.
    • (2007) IEEE Trans. Syst. Man. Cybernet. B , vol.37 , pp. 70
    • Zhu, Z.1    Ong, Y.2    Dash, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.