메뉴 건너뛰기




Volumn 43, Issue , 2015, Pages 30-38

Seizure detection method based on fractal dimension and gradient boosting

Author keywords

EEG; Fractal dimension; Gradient boosting; Seizure detection

Indexed keywords

ALGORITHM; ARTICLE; CLINICAL ARTICLE; DIAGNOSTIC TEST ACCURACY STUDY; ELECTROENCEPHALOGRAPHY; EVALUATION STUDY; FRACTAL ANALYSIS; HUMAN; K NEAREST NEIGHBOR; PERFORMANCE; PROBABILITY; RECOGNITION; SEIZURE; SENSITIVITY AND SPECIFICITY; DEVICES; LABORATORY DIAGNOSIS; PATIENT CARE; REPRODUCIBILITY; SEIZURES; STATISTICAL ANALYSIS; STATISTICS AND NUMERICAL DATA;

EID: 84919917551     PISSN: 15255050     EISSN: 15255069     Source Type: Journal    
DOI: 10.1016/j.yebeh.2014.11.025     Document Type: Article
Times cited : (48)

References (45)
  • 2
    • 0030317078 scopus 로고    scopus 로고
    • Long-term electroencephalographic monitoring for diagnosis and management of seizures
    • Lagerlund T.D., Cascino G.D., Cicora K.M., Sharbrough F.W. Long-term electroencephalographic monitoring for diagnosis and management of seizures. Mayo Clin Proc 1996, 71(10):1000-1006.
    • (1996) Mayo Clin Proc , vol.71 , Issue.10 , pp. 1000-1006
    • Lagerlund, T.D.1    Cascino, G.D.2    Cicora, K.M.3    Sharbrough, F.W.4
  • 3
    • 0020382517 scopus 로고
    • Automatic recognition of epileptic seizures in the EEG
    • Gotman J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr Clin Neurophysiol 1982, 54(5):530-540.
    • (1982) Electroencephalogr Clin Neurophysiol , vol.54 , Issue.5 , pp. 530-540
    • Gotman, J.1
  • 4
    • 0025049825 scopus 로고
    • Automatic seizure detection: improvements and evaluation
    • Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol 1990, 76(4):317-324.
    • (1990) Electroencephalogr Clin Neurophysiol , vol.76 , Issue.4 , pp. 317-324
    • Gotman, J.1
  • 5
    • 0027459473 scopus 로고
    • Improvement in seizure detection performance by automatic adaptation to the EEG of each patient
    • Qu H., Gotman J. Improvement in seizure detection performance by automatic adaptation to the EEG of each patient. Electroencephalogr Clin Neurophysiol 1993, 86(2):79-87.
    • (1993) Electroencephalogr Clin Neurophysiol , vol.86 , Issue.2 , pp. 79-87
    • Qu, H.1    Gotman, J.2
  • 6
    • 0031029383 scopus 로고    scopus 로고
    • A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device
    • Qu H., Gotman J. A patient-specific algorithm for the detection of seizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans Biomed Eng 1997, 44(2):115-122.
    • (1997) IEEE Trans Biomed Eng , vol.44 , Issue.2 , pp. 115-122
    • Qu, H.1    Gotman, J.2
  • 7
    • 24644496662 scopus 로고    scopus 로고
    • An automatic warning system for epileptic seizures recorded on intracerebral EEGs
    • Grewal S., Gotman J. An automatic warning system for epileptic seizures recorded on intracerebral EEGs. Clin Neurophysiol 2005, 116(10):2460-2472.
    • (2005) Clin Neurophysiol , vol.116 , Issue.10 , pp. 2460-2472
    • Grewal, S.1    Gotman, J.2
  • 8
    • 0030249804 scopus 로고    scopus 로고
    • Automated seizure detection using a self-organizing neural network
    • Gabor A.J., Leach R.R., Dowla F.U. Automated seizure detection using a self-organizing neural network. Electroencephalogr Clin Neurophysiol 1996, 99(3):257-266.
    • (1996) Electroencephalogr Clin Neurophysiol , vol.99 , Issue.3 , pp. 257-266
    • Gabor, A.J.1    Leach, R.R.2    Dowla, F.U.3
  • 9
    • 22844431998 scopus 로고    scopus 로고
    • A neural network method for automatic and incremental learning applied to patient-dependent seizure detection
    • Wilson S.B. A neural network method for automatic and incremental learning applied to patient-dependent seizure detection. Clin Neurophysiol 2005, 116(8):1785-1795.
    • (2005) Clin Neurophysiol , vol.116 , Issue.8 , pp. 1785-1795
    • Wilson, S.B.1
  • 10
    • 34248567678 scopus 로고    scopus 로고
    • Approximate entropy-based epileptic EEG detection using artificial neural networks
    • Srinivasan V., Eswaran C., Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inf Technol Biomed 2007, 11(3):288-295.
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , Issue.3 , pp. 288-295
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 11
    • 33745235087 scopus 로고    scopus 로고
    • One-class novelty detection for seizure analysis from intracranial EEG
    • Gardner A.B., Krieger A.M., Vachtsevanos G.J., Litt B. One-class novelty detection for seizure analysis from intracranial EEG. J Mach Learn Res 2006, 7:1025-1044.
    • (2006) J Mach Learn Res , vol.7 , pp. 1025-1044
    • Gardner, A.B.1    Krieger, A.M.2    Vachtsevanos, G.J.3    Litt, B.4
  • 12
    • 44649182792 scopus 로고    scopus 로고
    • Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns
    • Meier R., Dittrich H., Schulze-Bonhage A., Aertsen A. Detecting epileptic seizures in long-term human EEG: a new approach to automatic online and real-time detection and classification of polymorphic seizure patterns. J Clin Neurophysiol 2008, 25(3):119-131.
    • (2008) J Clin Neurophysiol , vol.25 , Issue.3 , pp. 119-131
    • Meier, R.1    Dittrich, H.2    Schulze-Bonhage, A.3    Aertsen, A.4
  • 13
    • 78751613317 scopus 로고    scopus 로고
    • EEG-based neonatal seizure detection with support vector machines
    • Temko A., Thomas E., Marnane W., Lightbody G., Boylan G. EEG-based neonatal seizure detection with support vector machines. Clin Neurophysiol 2011, 122(3):464-473.
    • (2011) Clin Neurophysiol , vol.122 , Issue.3 , pp. 464-473
    • Temko, A.1    Thomas, E.2    Marnane, W.3    Lightbody, G.4    Boylan, G.5
  • 14
    • 77951208271 scopus 로고    scopus 로고
    • Epileptic EEG detection using the linear prediction error energy
    • Altunaya S., Telatarb Z., Erogulc O. Epileptic EEG detection using the linear prediction error energy. Expert Syst Appl 2010, 37(8):5661-5665.
    • (2010) Expert Syst Appl , vol.37 , Issue.8 , pp. 5661-5665
    • Altunaya, S.1    Telatarb, Z.2    Erogulc, O.3
  • 16
    • 77951577412 scopus 로고    scopus 로고
    • Automatic identification of epileptic and background EEG signals using frequency domain parameters
    • Faust O., Acharya U.R., Min L.C., Sputh B.H. Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst 2010, 20(2):159-176.
    • (2010) Int J Neural Syst , vol.20 , Issue.2 , pp. 159-176
    • Faust, O.1    Acharya, U.R.2    Min, L.C.3    Sputh, B.H.4
  • 17
    • 84874524192 scopus 로고    scopus 로고
    • Automatic seizure detection in SEEG using high frequency activities in wavelet domain
    • Ayoubian L., Lacoma H., Gotman J. Automatic seizure detection in SEEG using high frequency activities in wavelet domain. Med Eng Phys 2013, 35(3):319-328.
    • (2013) Med Eng Phys , vol.35 , Issue.3 , pp. 319-328
    • Ayoubian, L.1    Lacoma, H.2    Gotman, J.3
  • 18
    • 84861996098 scopus 로고    scopus 로고
    • Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data
    • Conradsen I., Beniczky S., Wolf P., Kjaer T.W., Sams T., Sorensen H.B. Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data. Comput Methods Programs Biomed 2012, 107(2):97-110.
    • (2012) Comput Methods Programs Biomed , vol.107 , Issue.2 , pp. 97-110
    • Conradsen, I.1    Beniczky, S.2    Wolf, P.3    Kjaer, T.W.4    Sams, T.5    Sorensen, H.B.6
  • 19
    • 84893014401 scopus 로고    scopus 로고
    • Automatic seizure detection using diffusion distance and BLDA in intracranial EEG
    • Yuan S., Zhou W., Yuan Q., Zhang Y., Meng Q. Automatic seizure detection using diffusion distance and BLDA in intracranial EEG. Epilepsy Behav 2014, 31:339-345.
    • (2014) Epilepsy Behav , vol.31 , pp. 339-345
    • Yuan, S.1    Zhou, W.2    Yuan, Q.3    Zhang, Y.4    Meng, Q.5
  • 20
    • 84870547200 scopus 로고    scopus 로고
    • Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals
    • Martis R.J., Acharya U.R., Tan J.H., Petznick A., Yanti R., Chua C.K., et al. Application of empirical mode decomposition (emd) for automated detection of epilepsy using EEG signals. Int J Neural Syst 2012, 22(6):1250027.
    • (2012) Int J Neural Syst , vol.22 , Issue.6 , pp. 1250027
    • Martis, R.J.1    Acharya, U.R.2    Tan, J.H.3    Petznick, A.4    Yanti, R.5    Chua, C.K.6
  • 21
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural network employing Lyapunov exponents for EEG signals classification
    • Guler N.F., Ubey E.D., Guler I. Recurrent neural network employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 2005, 29(3):506-514.
    • (2005) Expert Syst Appl , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubey, E.D.2    Guler, I.3
  • 22
    • 34547573516 scopus 로고    scopus 로고
    • Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection
    • Ghosh-Dastidar S., Adeli H., Dadmehr N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng 2007, 54(9):1545-1551.
    • (2007) IEEE Trans Biomed Eng , vol.54 , Issue.9 , pp. 1545-1551
    • Ghosh-Dastidar, S.1    Adeli, H.2    Dadmehr, N.3
  • 26
    • 84975613293 scopus 로고
    • Estimating fractal dimension
    • Theiler J. Estimating fractal dimension. J Opt Soc Am A 1990, 7(6):1055-1073.
    • (1990) J Opt Soc Am A , vol.7 , Issue.6 , pp. 1055-1073
    • Theiler, J.1
  • 27
    • 0002534246 scopus 로고
    • Fractal dimension of strange attractors from radius versus size of arbitrary clusters
    • Termonia Y., Alexandrowicz Z. Fractal dimension of strange attractors from radius versus size of arbitrary clusters. Phys Rev Lett 1983, 51:1265-1268.
    • (1983) Phys Rev Lett , vol.51 , pp. 1265-1268
    • Termonia, Y.1    Alexandrowicz, Z.2
  • 28
    • 0033098491 scopus 로고    scopus 로고
    • Estimation of fractal dimension of images using a fixed mass approach
    • Asvestas P., Matsopoulos G.K., Nikita K.S. Estimation of fractal dimension of images using a fixed mass approach. Pattern Recogn Lett 1999, 20(3):347-354.
    • (1999) Pattern Recogn Lett , vol.20 , Issue.3 , pp. 347-354
    • Asvestas, P.1    Matsopoulos, G.K.2    Nikita, K.S.3
  • 29
    • 78549257819 scopus 로고    scopus 로고
    • Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection
    • Polychronaki G.E., Ktonas P.Y., Gatzonis S., Siatouni A., Asvestas P.A., Tsekou H., et al. Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection. J Neural Eng 2010, 7(4):046007.
    • (2010) J Neural Eng , vol.7 , Issue.4 , pp. 046007
    • Polychronaki, G.E.1    Ktonas, P.Y.2    Gatzonis, S.3    Siatouni, A.4    Asvestas, P.A.5    Tsekou, H.6
  • 30
    • 0028973885 scopus 로고
    • A practical method for estimating fractal dimension
    • Jin X.C., Ong S.H., Jayasooriah A practical method for estimating fractal dimension. Pattern Recogn Lett 1995, 16(5):457-464.
    • (1995) Pattern Recogn Lett , vol.16 , Issue.5 , pp. 457-464
    • Jin, X.C.1    Ong, S.H.2    Jayasooriah3
  • 31
    • 0023819518 scopus 로고
    • Fractals and the analysis of waveforms
    • Katz M.J. Fractals and the analysis of waveforms. Comput Biol Med 1988, 18(3):145-156.
    • (1988) Comput Biol Med , vol.18 , Issue.3 , pp. 145-156
    • Katz, M.J.1
  • 32
    • 45549113571 scopus 로고
    • Approach to an irregular time series on the basis of the fractal theory
    • Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D 1988, 31(2):277-283.
    • (1988) Physica D , vol.31 , Issue.2 , pp. 277-283
    • Higuchi, T.1
  • 33
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997, 55(1):119-139.
    • (1997) J Comput Syst Sci , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 34
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann Stat 2001, 29:1189-1232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 35
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence R., Bunn A., Powell S., Zambon M. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens Environ 2004, 90(3):331-336.
    • (2004) Remote Sens Environ , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 37
    • 33845621608 scopus 로고    scopus 로고
    • Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies
    • Schelter B., Winterhalder M., Maiwald T., Brandt A., Schad A., Timmer J., et al. Do false predictions of seizures depend on the state of vigilance? A report from two seizure-prediction methods and proposed remedies. Epilepsia 2006, 47(12):2058-2070.
    • (2006) Epilepsia , vol.47 , Issue.12 , pp. 2058-2070
    • Schelter, B.1    Winterhalder, M.2    Maiwald, T.3    Brandt, A.4    Schad, A.5    Timmer, J.6
  • 38
    • 69549116488 scopus 로고    scopus 로고
    • A fuzzy rule-based system for epileptic seizure detection in intracranial EEG
    • Aarabi A., Fazel-Rezai R., Aghakhani Y. A fuzzy rule-based system for epileptic seizure detection in intracranial EEG. Clin Neurophysiol 2009, 120(9):1648-1657.
    • (2009) Clin Neurophysiol , vol.120 , Issue.9 , pp. 1648-1657
    • Aarabi, A.1    Fazel-Rezai, R.2    Aghakhani, Y.3
  • 41
    • 84906940240 scopus 로고    scopus 로고
    • A low computation cost method for seizure prediction
    • Zhang Y., Zhou W., Yuan Q., Wu Q. A low computation cost method for seizure prediction. Epilepsy Res 2014, 108(8):1357-1366.
    • (2014) Epilepsy Res , vol.108 , Issue.8 , pp. 1357-1366
    • Zhang, Y.1    Zhou, W.2    Yuan, Q.3    Wu, Q.4
  • 42
    • 84864293306 scopus 로고    scopus 로고
    • Epileptic seizure detection with linear and nonlinear features
    • Yuan Q., Zhou W., Liu Y., Wang J. Epileptic seizure detection with linear and nonlinear features. Epilepsy Behav 2012, 24(4):415-421.
    • (2012) Epilepsy Behav , vol.24 , Issue.4 , pp. 415-421
    • Yuan, Q.1    Zhou, W.2    Liu, Y.3    Wang, J.4
  • 44
    • 79952314538 scopus 로고    scopus 로고
    • Improved patient specific seizure detection during pre-surgical evaluation
    • Chua E.C., Patel K., Fitzsimons M., Bleakley C.J. Improved patient specific seizure detection during pre-surgical evaluation. Clin Neurophysiol 2011, 122(4):672-679.
    • (2011) Clin Neurophysiol , vol.122 , Issue.4 , pp. 672-679
    • Chua, E.C.1    Patel, K.2    Fitzsimons, M.3    Bleakley, C.J.4
  • 45
    • 83455164939 scopus 로고    scopus 로고
    • Multistage seizure detection techniques optimized for low-power hardware platforms
    • Raghunathan S., Jaitli A., Irazoqui P.P. Multistage seizure detection techniques optimized for low-power hardware platforms. Epilepsy Behav 2011, 22:S61-S68.
    • (2011) Epilepsy Behav , vol.22 , pp. S61-S68
    • Raghunathan, S.1    Jaitli, A.2    Irazoqui, P.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.