메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 1611-1624

Multi-label classification via feature-aware implicit label space encoding

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); DECODING; LEARNING SYSTEMS; MATRIX ALGEBRA;

EID: 84919914091     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (57)

References (31)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multitask feature learning
    • Argyriou, A., Evgeniou, T., and Pontil, M. Convex multitask feature learning. Mach. Learn., 73(3):243-272, 2008.
    • (2008) Mach. Learn. , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 2
    • 84867137594 scopus 로고    scopus 로고
    • The landmark selection method for multiple output prediction
    • Balasubramanian, K. and Lebanon, G. The landmark selection method for multiple output prediction. In ICML, 2012.
    • (2012) ICML
    • Balasubramanian, K.1    Lebanon, G.2
  • 3
    • 84897481254 scopus 로고    scopus 로고
    • Efficient multi-label classification with many labels
    • Bi, W. and Kwok, J. Efficient multi-label classification with many labels. In ICML, 2013.
    • (2013) ICML
    • Bi, W.1    Kwok, J.2
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell, M.R., Luo, J., Shen, X., and Brown, C.M. Learning multi-label scene classification. Pattern Recognit., 37(9): 1757-1771, 2004.
    • (2004) Pattern Recognit , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 6
    • 84877784525 scopus 로고    scopus 로고
    • Feature-aware label space dimension reduction for multi-label classification
    • Chen, Y. and Lin, H. Feature-aware label space dimension reduction for multi-label classification. In NIPS, 2012.
    • (2012) NIPS
    • Chen, Y.1    Lin, H.2
  • 7
    • 84893085273 scopus 로고    scopus 로고
    • Multiclass-multilabel classification with more classes than examples
    • Dekel, O. and Shamir, O. Multiclass-multilabel classification with more classes than examples. In AISTAT, 2010.
    • (2010) AISTAT
    • Dekel, O.1    Shamir, O.2
  • 9
    • 50949133669 scopus 로고    scopus 로고
    • Lib- linear: A library for large linear classification
    • Fan, R., Chang, K., Hsieh, C., Wang, X., and Lin, C. Lib- linear: A library for large linear classification. J. Mach. Learn. Res., 9:1871-1874, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1871-1874
    • Fan, R.1    Chang, K.2    Hsieh, C.3    Wang, X.4    Lin, C.5
  • 10
  • 11
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon, D.R., Szedmak, S.R., and Shawe-taylor, J.R. Canonical correlation analysis: An overview with application to learning methods. Neural Comput., 16(12), 2004.
    • (2004) Neural Comput. , vol.16 , Issue.12
    • Hardoon, D.R.1    Szedmak, S.R.2    Shawe-Taylor, J.R.3
  • 13
    • 77956528679 scopus 로고    scopus 로고
    • Multi- label prediction via compressed sensing
    • Hsu, D., Kakade, S.M., Langford, J., and Zhang, T. Multi- label prediction via compressed sensing. NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.M.2    Langford, J.3    Zhang, T.4
  • 15
    • 84877734258 scopus 로고    scopus 로고
    • Multilabel classification using bayesian compressed sensing
    • Kapoor, A., Viswanathan, R., and Jain, P. Multilabel classification using bayesian compressed sensing. In NIPS, 2012.
    • (2012) NIPS
    • Kapoor, A.1    Viswanathan, R.2    Jain, P.3
  • 16
    • 77956208484 scopus 로고    scopus 로고
    • Multilabel text classification for automated tag suggestion
    • Katakis, I., Tsoumakas, G., and Vlahavas, I. Multilabel text classification for automated tag suggestion. In ECMUPKDD, 2008.
    • (2008) ECMUPKDD
    • Katakis, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 17
    • 0030502142 scopus 로고    scopus 로고
    • Deflation techniques for an implicitly restarted arnoldi iteration
    • Lehoucq, R. B. and Sorensen, D. C. Deflation techniques for an implicitly restarted arnoldi iteration. SIAM J. Matrix Anal. Appl., 17(4):789-821, 1996.
    • (1996) SIAM J. Matrix Anal. Appl. , vol.17 , Issue.4 , pp. 789-821
    • Lehoucq, R.B.1    Sorensen, D.C.2
  • 18
    • 70350625169 scopus 로고    scopus 로고
    • Lire: Lucene image retrieval: An extensible java cbir library
    • Lux, M. and Chatzichristofis, S. A. Lire: lucene image retrieval: An extensible java cbir library. In MM, 2008.
    • (2008) MM
    • Lux, M.1    Chatzichristofis, S.A.2
  • 19
    • 62749175137 scopus 로고    scopus 로고
    • Cosamp: Iterative signal recovery from incomplete and inaccurate samples
    • Needell, D. and Tropp, J.A. Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal., 26(3):301-321, 2009.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 20
    • 84861452189 scopus 로고    scopus 로고
    • Multi-label classification with principle label space transformation
    • Tai, F. and Lin, H. Multi-label classification with principle label space transformation. In MLD, 2010.
    • (2010) MLD
    • Tai, F.1    Lin, H.2
  • 22
  • 23
    • 74849083829 scopus 로고    scopus 로고
    • Effective and efficient multilabel classification in domains with large number of labels
    • Tsoumakas, G., Katakis, I., and Vlahavas, I. Effective and efficient multilabel classification in domains with large number of labels. In ECMUPKDD, 2008a.
    • (2008) ECMUPKDD
    • Tsoumakas, G.1    Katakis, I.2    Vlahavas, I.3
  • 26
    • 84873447495 scopus 로고    scopus 로고
    • Multi- label classification of music into emotions
    • Tsoumakas, K.T.G., Kalliris, G., and Vlahavas, I. Multi- label classification of music into emotions. In ICMIR, 2008b.
    • (2008) ICMIR
    • Tsoumakas, K.T.G.1    Kalliris, G.2    Vlahavas, I.3
  • 27
    • 84863603789 scopus 로고    scopus 로고
    • Multi-label classification using boolean matrix decomposition
    • Wicker, J., Pfahringer, B., and Kramer, S. Multi-label classification using boolean matrix decomposition. In SAC, 2012.
    • (2012) SAC
    • Wicker, J.1    Pfahringer, B.2    Kramer, S.3
  • 28
    • 84885061949 scopus 로고    scopus 로고
    • A review on multi-label learning algorithms
    • PP
    • Zhang, M. and Zhou, Z. A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng., PP(99):1-1, 2013.
    • (2013) IEEE Trans. Knowl. Data Eng. , Issue.99 , pp. 1-1
    • Zhang, M.1    Zhou, Z.2
  • 29
    • 84867117484 scopus 로고    scopus 로고
    • Multi-label output codes using canonical correlation analysis
    • Zhang, Y. and Schneider, J.G. Multi-label output codes using canonical correlation analysis. In AISTAT, 2011.
    • (2011) AISTAT
    • Zhang, Y.1    Schneider, J.G.2
  • 30
    • 84919895934 scopus 로고    scopus 로고
    • Multi-label subspace ensemble
    • Zhou, T. and Tao, D. Multi-label subspace ensemble. In AISTAT, 2012.
    • (2012) AISTAT
    • Zhou, T.1    Tao, D.2
  • 31
    • 84865275504 scopus 로고    scopus 로고
    • Compressed labeling on distilled labelsets for multi-label learning
    • Zhou, T., Tao, D., and Wu, X. Compressed labeling on distilled labelsets for multi-label learning. Mach. Learn., 88(1-2):69-126, 2012.
    • (2012) Mach. Learn. , vol.88 , Issue.1-2 , pp. 69-126
    • Zhou, T.1    Tao, D.2    Wu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.