메뉴 건너뛰기




Volumn , Issue , 2012, Pages 179-186

Multi-label classification using boolean matrix decomposition

Author keywords

associations; Boolean matrix decomposition; multi label classification

Indexed keywords

BOOLEAN COMBINATIONS; BOOLEAN MATRIX; BOOLEAN MATRIX MULTIPLICATION; DATA SETS; EXPERIMENTAL EVALUATION; LEVEL MODEL; MULTI-LABEL;

EID: 84863603789     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2245276.2245311     Document Type: Conference Paper
Times cited : (50)

References (19)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 7
    • 77956528679 scopus 로고    scopus 로고
    • Multi-label prediction via compressed sensing
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Neural Information Processing Systems (NIPS) Foundation
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-label prediction via compressed sensing. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 772-780. Neural Information Processing Systems (NIPS) Foundation, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 772-780
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 8
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • AAAI Press
    • Y. Liu, R. Jin, and L. Yang. Semi-supervised multi-label learning by constrained non-negative matrix factorization. In Proceedings of the 21st national conference on Artificial intelligence - Volume 1, pages 421-426. AAAI Press, 2006.
    • (2006) Proceedings of the 21st National Conference on Artificial Intelligence , vol.1 , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 9
    • 48349110118 scopus 로고    scopus 로고
    • The boolean column and column-row matrix decompositions
    • P. Miettinen. The boolean column and column-row matrix decompositions. Data Mining and Knowledge Discovery, 17(1):39-56, 2008.
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.1 , pp. 39-56
    • Miettinen, P.1
  • 13
    • 0033905095 scopus 로고    scopus 로고
    • BoosTexter: A boosting-based system for text categorization
    • R. Schapire and Y. Singer. Boostexter: a boosting-based system for text categorization. Machine Learning, 39(2/3):135-168, 2000. (Pubitemid 30594821)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 14
    • 84861452189 scopus 로고    scopus 로고
    • Multi-label classification with principle label space transformation
    • G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou, editors
    • F. Tai and H.-T. Lin. Multi-label classification with principle label space transformation. In G. Tsoumakas, M.-L. Zhang, and Z.-H. Zhou, editors, Proceedings of the second International Workshop on Learning from Multi-Label data, pages 45-52, 2010.
    • (2010) Proceedings of the Second International Workshop on Learning from Multi-Label Data , pp. 45-52
    • Tai, F.1    Lin, H.-T.2
  • 19
    • 33750260525 scopus 로고    scopus 로고
    • A k-nearest neighbor based algorithm for multi-label classification
    • Vol. 2. The IEEE Computational Intelligence Society
    • M.-L. Zhang and Z.-H. Zhou. A k-nearest neighbor based algorithm for multi-label classification. In IEEE International Conference on Granular Computing, volume 2, pages 718-721 Vol. 2. The IEEE Computational Intelligence Society, 2005.
    • (2005) IEEE International Conference on Granular Computing , vol.2 , pp. 718-721
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.