메뉴 건너뛰기




Volumn , Issue , 2011, Pages 164-175

Clustered low rank approximation of graphs in information science applications

Author keywords

Clustering; Dimension reduction; Graph mining; Low rank matrix approximation; Stochastic algorithms

Indexed keywords

APPROXIMATION THEORY; CLUSTERING ALGORITHMS; DATA MINING; SINGULAR VALUE DECOMPOSITION; STOCHASTIC SYSTEMS;

EID: 84864650291     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972818.15     Document Type: Conference Paper
Times cited : (56)

References (33)
  • 1
    • 84880129508 scopus 로고    scopus 로고
    • Multilevel algorithms for partitioning power-law graphs
    • A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning power-law graphs. In IEEE IPDPS, 2006.
    • (2006) IEEE IPDPS
    • Abou-Rjeili, A.1    Karypis, G.2
  • 2
    • 33748798478 scopus 로고    scopus 로고
    • Graph-basedmethods for analysing networks in cell biology
    • T. Aittokallio and B. Schwikowski. Graph-basedmethods for analysing networks in cell biology. Briefings in Bioinformatics, 7:243-255, 2006.
    • (2006) Briefings in Bioinformatics , vol.7 , pp. 243-255
    • Aittokallio, T.1    Schwikowski, B.2
  • 3
    • 84899006536 scopus 로고    scopus 로고
    • Learning spectral clustering
    • F. R. Bach and M. I. Jordan. Learning spectral clustering. In NIPS, 2004.
    • (2004) NIPS
    • Bach, F.R.1    Jordan, M.I.2
  • 6
    • 70349339356 scopus 로고    scopus 로고
    • Clustered subset selection and its applications on IT service metrics
    • C. Boutsidis, J. Sun, and N. Anerousis. Clustered subset selection and its applications on IT service metrics. In ACM CIKM, pages 599-608, 2008.
    • (2008) ACM CIKM , pp. 599-608
    • Boutsidis, C.1    Sun, J.2    Anerousis, N.3
  • 7
    • 0038294436 scopus 로고    scopus 로고
    • CSVD: Clustering and singular value decomposition for approximate similarity search in high-dimensional spaces
    • V. Castelli, A. Thomasian, and C.-S. Li. CSVD: Clustering and singular value decomposition for approximate similarity search in high-dimensional spaces. IEEE TKDE, 15(3):671-685, 2003.
    • (2003) IEEE TKDE , vol.15 , Issue.3 , pp. 671-685
    • Castelli, V.1    Thomasian, A.2    Li, C.-S.3
  • 8
    • 34548748711 scopus 로고    scopus 로고
    • Weighted graph cuts without eigenvectors: A multilevel approach
    • I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. IEEE TPAMI, 29(11):1944-1957, 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.11 , pp. 1944-1957
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 9
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1/2):143-175, 2001.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 10
    • 33751075906 scopus 로고    scopus 로고
    • Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    • P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms for matrices II: Computing a low-rank approximation to a matrix. SICOMP, 36(1):158-183, 2006.
    • (2006) SICOMP , vol.36 , Issue.1 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.W.3
  • 11
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 12
  • 13
    • 84893085951 scopus 로고    scopus 로고
    • CLSI: A flexible approximation scheme from clustered term-document matrices
    • E. Gallopoulos and D. Zeimpekis. CLSI: A flexible approximation scheme from clustered term-document matrices. In SDM, 2005.
    • (2005) SDM
    • Gallopoulos, E.1    Zeimpekis, D.2
  • 16
    • 77956553147 scopus 로고    scopus 로고
    • Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions
    • California Institute of Technology
    • N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions. Tech. rep. 2009-05, App. and Comp. Math, California Institute of Technology, 2009.
    • (2009) Tech. Rep. 2009-05, App. and Comp. Math
    • Halko, N.1    Martinsson, P.G.2    Tropp, J.A.3
  • 17
    • 0002827622 scopus 로고
    • A new status index derived from sociometric analysis
    • L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39-43, 1953.
    • (1953) Psychometrika , vol.18 , pp. 39-43
    • Katz, L.1
  • 18
    • 84924178998 scopus 로고    scopus 로고
    • Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29-123, 2009.
    • (2009) Internet Mathematics , vol.6 , Issue.1 , pp. 29-123
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 19
    • 52949106331 scopus 로고    scopus 로고
    • Statistical properties of community structure in large social and information networks
    • J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties of community structure in large social and information networks. In WWW, pages 695-704, 2008.
    • (2008) WWW , pp. 695-704
    • Leskovec, J.1    Lang, K.J.2    Dasgupta, A.3    Mahoney, M.W.4
  • 21
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, pages 849-856, 2001.
    • (2001) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 23
    • 72449140504 scopus 로고    scopus 로고
    • A randomized algorithm for principal component analysis
    • V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIMAX, 31(3):1100-1124, 2009.
    • (2009) SIMAX , vol.31 , Issue.3 , pp. 1100-1124
    • Rokhlin, V.1    Szlam, A.2    Tygert, M.3
  • 24
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE TPAMI, 22:888-905, 2000.
    • (2000) IEEE TPAMI , vol.22 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 26
    • 79951738724 scopus 로고    scopus 로고
    • Scalable proximity estimation and link prediction in online social networks
    • H. H. Song, T. W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity estimation and link prediction in online social networks. In IMC SIGCOMM, pages 322-335, 2009.
    • (2009) IMC SIGCOMM , pp. 322-335
    • Song, H.H.1    Cho, T.W.2    Dave, V.3    Zhang, Y.4    Qiu, L.5
  • 27
    • 70449397497 scopus 로고    scopus 로고
    • Matrix algorithms, volume II: Eigensystems
    • G.W. Stewart. Matrix Algorithms, volume II: Eigensystems. SIAM, 2001.
    • (2001) SIAM
    • Stewart, G.W.1
  • 29
    • 36849093960 scopus 로고    scopus 로고
    • Fast direction-aware proximity for graph mining
    • H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity for graph mining. In ACM SIGKDD, pages 747-756, 2007.
    • (2007) ACM SIGKDD , pp. 747-756
    • Tong, H.1    Faloutsos, C.2    Koren, Y.3
  • 30
    • 84881034343 scopus 로고    scopus 로고
    • Scalable affiliation recommendation using auxiliary networks
    • To appear
    • V. Vasuki, N. Natarajan, Z. Lu, B. Savas, and I. S. Dhillon. Scalable affiliation recommendation using auxiliary networks. To appear in ACM TIST, 2010.
    • (2010) ACM TIST
    • Vasuki, V.1    Natarajan, N.2    Lu, Z.3    Savas, B.4    Dhillon, I.S.5
  • 31
    • 84978973260 scopus 로고
    • Between min cut and graph bisection
    • D. Wagner and F. Wagner. Between min cut and graph bisection. In MFCS, pages 744-750, 1993.
    • (1993) MFCS , pp. 744-750
    • Wagner, D.1    Wagner, F.2
  • 32
    • 77957779140 scopus 로고    scopus 로고
    • Clustered nyström method for large scale manifold learning and dimension reduction
    • K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold learning and dimension reduction. IEEE TNN, 21:1576-1587, 2010.
    • (2010) IEEE TNN , vol.21 , pp. 1576-1587
    • Zhang, K.1    Kwok, J.T.2
  • 33
    • 0035537410 scopus 로고    scopus 로고
    • Structure and perturbation analysis of truncated SVDs for column-partitioned matrices
    • Z. Zhang and H. Zha. Structure and perturbation analysis of truncated SVDs for column-partitioned matrices. SIMAX, 22(4):1245-1262, 2001.
    • (2001) SIMAX , vol.22 , Issue.4 , pp. 1245-1262
    • Zhang, Z.1    Zha, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.