메뉴 건너뛰기




Volumn , Issue , 2014, Pages 761-766

Linked source and target domain subspace feature transfer learning - Exemplified by speech emotion recognition

Author keywords

Cross corpus; Denoising autoencoders; Domain adaptation; Feature transfer learning; Speech emotion recognition

Indexed keywords

LEARNING SYSTEMS; TRANSFER LEARNING;

EID: 84919904301     PISSN: 10514651     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICPR.2014.141     Document Type: Conference Paper
Times cited : (30)

References (25)
  • 2
    • 79959813736 scopus 로고    scopus 로고
    • A novel feature extraction strategy for multi-stream robust emotion identification
    • Makuhari, Japan
    • G. Liu, Y. Lei, and J. H. Hansen, "A novel feature extraction strategy for multi-stream robust emotion identification, " in Proc. of INTERSPEECH, Makuhari, Japan, 2010, pp. 482-485.
    • (2010) Proc. of INTERSPEECH , pp. 482-485
    • Liu, G.1    Lei, Y.2    Hansen, J.H.3
  • 4
    • 84860644702 scopus 로고    scopus 로고
    • Measuring invariances in deep networks
    • Vancouver, Canada
    • I. Goodfellow, Q. Le, A. Saxe, H. Lee, and A. Ng, "Measuring invariances in deep networks, " in Proc. NIPS, Vancouver, Canada, 2009, pp. 646-654.
    • (2009) Proc. NIPS , pp. 646-654
    • Goodfellow, I.1    Le, Q.2    Saxe, A.3    Lee, H.4    Ng, A.5
  • 5
    • 84893302329 scopus 로고    scopus 로고
    • Sparse autoencoderbased feature transfer learning for speech emotion recognition
    • Geneva, Switzerland
    • J. Deng, Z. Zhang, E. Marchi, and B. Schuller, "Sparse autoencoderbased feature transfer learning for speech emotion recognition, " in Proc. ACII, Geneva, Switzerland, 2013, pp. 511-516.
    • (2013) Proc. ACII , pp. 511-516
    • Deng, J.1    Zhang, Z.2    Marchi, E.3    Schuller, B.4
  • 6
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: A deep learning approach
    • Bellevue, U. S. A
    • X. Glorot, A. Bordes, and Y. Bengio, "Domain adaptation for large-scale sentiment classification: A deep learning approach, " in Proc. ICML, Bellevue, U. S. A., 2011.
    • (2011) Proc. ICML
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 7
    • 67049174125 scopus 로고    scopus 로고
    • Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection
    • Vancouver, Canada
    • T. Kanamori, S. Hido, and M. Sugiyama, "Efficient direct density ratio estimation for non-stationarity adaptation and outlier detection, " in Proc. of NIPS, Vancouver, Canada, 2008, pp. 809-816.
    • (2008) Proc. of NIPS , pp. 809-816
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 8
    • 52649148544 scopus 로고    scopus 로고
    • Direct importance estimation with model selectionand its application to covariate shift adaptation
    • Vancouver, Canada
    • M. Sugiyama, S. Nakajima, H. Kashima, P. von Bü nau, and M. Kawanabe, "Direct importance estimation with model selectionand its application to covariate shift adaptation, " in Proc. of NIPS, Vancouver, Canada, 2007, pp. 1433-1440.
    • (2007) Proc. of NIPS , pp. 1433-1440
    • Sugiyama, M.1    Nakajima, S.2    Kashima, H.3    Von Bünau, P.4    Kawanabe, M.5
  • 11
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • Helsinki, Finland
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders, " in Proc. of ICML, Helsinki, Finland, 2008, pp. 1096-1103.
    • (2008) Proc. of ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 12
    • 84906237972 scopus 로고    scopus 로고
    • Using denoising autoencoder for emotion recognition
    • Lyon, France
    • R. Xia and Y. Liu, "Using denoising autoencoder for emotion recognition, " in Proc. of INTERSPEECH, Lyon, France, 2013.
    • (2013) Proc. of INTERSPEECH
    • Xia, R.1    Liu, Y.2
  • 13
    • 84898957022 scopus 로고    scopus 로고
    • Learning a deep compact image representation for visual tracking
    • N. Wang and D.-Y. Yeung, "Learning a deep compact image representation for visual tracking, " in Proc. of NIPS, 2013, pp. 809-817.
    • (2013) Proc. of NIPS , pp. 809-817
    • Wang, N.1    Yeung, D.-Y.2
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 16
    • 84890526379 scopus 로고    scopus 로고
    • Deep learning for robust feature generation in audiovisual emotion recognition
    • Vancouver, Canada
    • Y. Kim, H. Lee, and E. M. Provost, "Deep learning for robust feature generation in audiovisual emotion recognition, " in Proc. of ICASSP, Vancouver, Canada, 2013, pp. 6822-6826.
    • (2013) Proc. of ICASSP , pp. 6822-6826
    • Kim, Y.1    Lee, H.2    Provost, E.M.3
  • 17
    • 84858985413 scopus 로고    scopus 로고
    • Unsupervised learning in cross-corpus acoustic emotion recognition
    • Big Island, HY
    • Z. Zhang, F. Weninger, M. Wö llmer, and B. Schuller, "Unsupervised learning in cross-corpus acoustic emotion recognition, " in Proc. of ASRU, Big Island, HY, 2011, pp. 523-528.
    • (2011) Proc. of ASRU , pp. 523-528
    • Zhang, Z.1    Weninger, F.2    Wöllmer, M.3    Schuller, B.4
  • 18
    • 79952033154 scopus 로고    scopus 로고
    • Cross-corpus classification of realistic emotions-some pilot experiments
    • Valletta, Malta
    • F. Eyben, A. Batliner, B. Schuller, D. Seppi, and S. Steidl, "Cross-corpus classification of realistic emotions-some pilot experiments, " in Proc. of LREC Workshop, Valletta, Malta, 2010, pp. 77-82.
    • (2010) Proc. of LREC Workshop , pp. 77-82
    • Eyben, F.1    Batliner, A.2    Schuller, B.3    Seppi, D.4    Steidl, S.5
  • 19
    • 70450206416 scopus 로고    scopus 로고
    • The interspeech 2009 emotion challenge
    • Brisbane, U. K
    • B. Schuller, S. Steidl, and A. Batliner, "The INTERSPEECH 2009 Emotion Challenge, " in Proc. INTERSPEECH, Brisbane, U. K., 2009, pp. 2794-2797.
    • (2009) Proc. INTERSPEECH , pp. 2794-2797
    • Schuller, B.1    Steidl, S.2    Batliner, A.3
  • 20
    • 34547514189 scopus 로고    scopus 로고
    • Audiovisual behavior modeling by combined feature spaces
    • Honolulu, HY
    • B. Schuller, D. Arsic, G. Rigoll, M. Wimmer, and B. Radig, "Audiovisual behavior modeling by combined feature spaces, " in Proc. of ICASSP, Honolulu, HY, 2007, pp. 733-736.
    • (2007) Proc. of ICASSP , pp. 733-736
    • Schuller, B.1    Arsic, D.2    Rigoll, G.3    Wimmer, M.4    Radig, B.5
  • 21
    • 85089273681 scopus 로고    scopus 로고
    • Getting started with susas: A speech under simulated and actual stress database
    • Rhodes, Greece
    • J. Hansen and S. Bou-Ghazale, "Getting started with SUSAS: A speech under simulated and actual stress database, " in Proc. EUROSPEECH, Rhodes, Greece, 1997.
    • (1997) Proc. EUROSPEECH
    • Hansen, J.1    Bou-Ghazale, S.2
  • 22
    • 77949415384 scopus 로고    scopus 로고
    • OpenEAR-Introducing the munich open-source emotion and affect recognition toolkit
    • Amsterdam
    • F. Eyben, M. Wollmer, and B. Schuller, "openEAR-Introducing the Munich open-source emotion and affect recognition toolkit, " in Proc. ACII, Amsterdam, 2009, pp. 576-581.
    • (2009) Proc. ACII , pp. 576-581
    • Eyben, F.1    Wollmer, M.2    Schuller, B.3
  • 24
    • 84887853962 scopus 로고    scopus 로고
    • M. Schmidt. (2012) minFunc. [Online]. Available: http: //www.di.ens.fr/ mschmidt/Software/minFunc.html
    • (2012) MinFunc
    • Schmidt, M.1
  • 25
    • 84872343315 scopus 로고    scopus 로고
    • Deep learning of representations for unsupervised and transfer learning
    • Bellevue, U. S. A
    • Y. Bengio, "Deep learning of representations for unsupervised and transfer learning, " in Proc. ICML, Bellevue, U. S. A., 2011
    • (2011) Proc. ICML
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.