-
1
-
-
84877769190
-
Learning the structure of deep sparse graphical models
-
Adams, R. P., Wallach, H. M., and Ghahramani, Z. Learning the structure of deep sparse graphical models. In AISTATS, 2010.
-
(2010)
AISTATS
-
-
Adams, R.P.1
Wallach, H.M.2
Ghahramani, Z.3
-
2
-
-
77951131231
-
A tutorial on particle filtering and smoothing: Fifteen years later
-
eds. University Press
-
Doucet, A. and Johansen, A. M. A tutorial on particle filtering and smoothing: fifteen years later. In In Handbook of Nonlinear Filtering (eds. University Press, 2009.
-
(2009)
Handbook of Nonlinear Filtering
-
-
Doucet, A.1
Johansen, A.M.2
-
3
-
-
80053435834
-
-
Technical Report 2830, MIT Laboratory for Information and Decision Systems, March
-
Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. Bayesian nonparametric inference of switching linear dynamical systems. Technical Report 2830, MIT Laboratory for Information and Decision Systems, March 2010.
-
(2010)
Bayesian Nonparametric Inference of Switching Linear Dynamical Systems
-
-
Fox, E.B.1
Sudderth, E.B.2
Jordan, M.I.3
Willsky, A.S.4
-
7
-
-
80053161515
-
Infinite hierarchical hidden Markov models
-
Heller, K. A., Teh, Y. W., and Görür, D. Infinite hierarchical hidden Markov models. In AISTATS, 2009.
-
(2009)
AISTATS
-
-
Heller, K.A.1
Teh, Y.W.2
Görür, D.3
-
9
-
-
0007788905
-
The factored frontier algorithm for approximate inference in dbns
-
Murphy, K. P. and Weiss, Y. The factored frontier algorithm for approximate inference in dbns. In UAI, 2001.
-
(2001)
UAI
-
-
Murphy, K.P.1
Weiss, Y.2
-
11
-
-
25644453369
-
Learning dynamic Bayesian network models via cross-validation
-
October
-
Peña, J. M., Björkegren, J., and Tegnér, J. Learning dynamic Bayesian network models via cross-validation. Pattern Recogn. Lett., 26, October 2005.
-
(2005)
Pattern Recogn. Lett.
, vol.26
-
-
Peña, J.M.1
Björkegren, J.2
Tegnér, J.3
-
12
-
-
33751407959
-
Computational inference of neural information flow networks
-
Smith, V. A., Yu, J., Smulders, T. V., Hartemink, A. J., and Jarvis, E. D. Computational inference of neural information flow networks. PLoS Computational Biology, 2(11), 2006.
-
(2006)
PLoS Computational Biology
, vol.2
, Issue.11
-
-
Smith, V.A.1
Yu, J.2
Smulders, T.V.3
Hartemink, A.J.4
Jarvis, E.D.5
-
13
-
-
33749249312
-
Hierarchical Dirichlet processes
-
Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101:1566-1581, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 1566-1581
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.M.4
-
14
-
-
84858786659
-
The infinite factorial hidden Markov model
-
van Gael, J., Teh, Y. W., and Ghahramani, Z. The infinite factorial hidden Markov model. In NIPS, 2009.
-
(2009)
NIPS
-
-
Van Gael, J.1
Teh, Y.W.2
Ghahramani, Z.3
-
15
-
-
80053162986
-
The infinite latent events model
-
Wingate, D., Goodman, N. D., Roy, D. M., and Tenenbaum, J. B. The infinite latent events model. UAI, 2009.
-
(2009)
UAI
-
-
Wingate, D.1
Goodman, N.D.2
Roy, D.M.3
Tenenbaum, J.B.4
-
16
-
-
80053436422
-
Research on structure learning of dynamic Bayesian networks by particle swarm optimization
-
Xing-Chen, H., Zheng, Q., Lei, T., and Li-Ping, S. Research on structure learning of dynamic Bayesian networks by particle swarm optimization. In Artificial Life, 2007.
-
(2007)
Artificial Life
-
-
Xing-Chen, H.1
Zheng, Q.2
Lei, T.3
Li-Ping, S.4
|