메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 4038-4046

Efficient dimensionality reduction for high-dimensional network estimation

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; DISEASES; GRAPHIC METHODS; LEARNING SYSTEMS;

EID: 84919818641     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (29)
  • 2
    • 77249167990 scopus 로고    scopus 로고
    • Inferring sparse gaussian graphical models with latent structure
    • Ambroise, C, Chiquet, J., and Matias, C. Inferring sparse gaussian graphical models with latent structure. Electron. J. Statist., 3:205-238, 2009.
    • (2009) Electron. J. Statist. , vol.3 , pp. 205-238
    • Ambroise, C.1    Chiquet, J.2    Matias, C.3
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., El Ghaoui, L., and d'Aspremont, A. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. JMLR, 9:485-516, 2008.
    • (2008) JMLR , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 67649440886 scopus 로고    scopus 로고
    • The biology of ovarian cancer: New opportunities for translation
    • Bast, R.C., Hennessy, B., and Mills, G.B. The biology of ovarian cancer: new opportunities for translation. Nature Reviews Cancer, 9(6):415-128, 2009.
    • (2009) Nature Reviews Cancer , vol.9 , Issue.6 , pp. 415-428
    • Bast, R.C.1    Hennessy, B.2    Mills, G.B.3
  • 5
    • 84871998365 scopus 로고    scopus 로고
    • Latent variable graphical model selection via convex optimization
    • Chandrasekaran, V., Parrilo, P.A., and Willsky, A.S. Latent variable graphical model selection via convex optimization. The Annals of Statistics, 40:1935-1967, 2012.
    • (2012) The Annals of Statistics , vol.40 , pp. 1935-1967
    • Chandrasekaran, V.1    Parrilo, P.A.2    Willsky, A.S.3
  • 6
    • 0037180757 scopus 로고    scopus 로고
    • Inflammation and cancer
    • Coussens, L.M. and Werb, Z. Inflammation and cancer. Nature, 420(6917):860-867, 2002.
    • (2002) Nature , vol.420 , Issue.6917 , pp. 860-867
    • Coussens, L.M.1    Werb, Z.2
  • 9
    • 80053264034 scopus 로고    scopus 로고
    • Projected subgradient methods for learning sparse gaussians
    • Duchi, J., Gould, S., and Koller, D. Projected subgradient methods for learning sparse gaussians. UAI, 2008.
    • (2008) UAI
    • Duchi, J.1    Gould, S.2    Koller, D.3
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T, and Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatis-tics, 9:432-441,2007.
    • (2007) Biostatis-tics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 84872003285 scopus 로고    scopus 로고
    • Discussion: Latent variable graphical model selection via convex optimization
    • Giraud, C. and Tsybakov, A.S. Discussion: Latent variable graphical model selection via convex optimization. The Annals of Statistics, 40(4):1984-1988, 2012.
    • (2012) The Annals of Statistics , vol.40 , Issue.4 , pp. 1984-1988
    • Giraud, C.1    Tsybakov, A.S.2
  • 14
    • 85162490550 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation using quadratic approximation
    • Hsieh, Cho-Jui, Sustik, Matyas A., Dhillon, Inderjit S., and Ravikumar, Pradeep K. Sparse inverse covariance matrix estimation using quadratic approximation. NIPS, 2011.
    • (2011) NIPS
    • Hsieh, C.-J.1    Sustik, M.A.2    Dhillon, I.S.3    Ravikumar, P.K.4
  • 18
    • 71149085559 scopus 로고    scopus 로고
    • Sparse gaussian graphical models with unknown block structure
    • Marlin, B.M. and Murphy, K. Sparse gaussian graphical models with unknown block structure. ICML, 2009.
    • (2009) ICML
    • Marlin, B.M.1    Murphy, K.2
  • 19
    • 80053156227 scopus 로고    scopus 로고
    • Group sparse priors for covariance estimation
    • Marlin, B.M., Schmidt, M., and Murphy, K. Group sparse priors for covariance estimation. UAI, 2009.
    • (2009) UAI
    • Marlin, B.M.1    Schmidt, M.2    Murphy, K.3
  • 21
    • 77955995598 scopus 로고    scopus 로고
    • Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm
    • Schmidt, M., van den Berg, E., Friedlander, M.P., and Murphy, K. Optimizing costly functions with simple constraints: A limited-memory projected quasi-newton algorithm. AISTATS, 2009.
    • (2009) AISTATS
    • Schmidt, M.1    Van Den Berg, E.2    Friedlander, M.P.3    Murphy, K.4
  • 22
    • 79959838081 scopus 로고    scopus 로고
    • Integrated genomic analyses of ovarian carcinoma
    • TCGA, Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353):609-15,2012.
    • (2012) Nature , vol.474 , Issue.7353 , pp. 609-615
    • TCGA, Cancer Genome Atlas Research Network,1
  • 24
    • 0036191190 scopus 로고    scopus 로고
    • Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling
    • Toh, H. and Horimoto, K. Inference of a genetic network by a combined approach of cluster analysis and graphical gaussian modeling. Bioinformatics, 18(2):287-297, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 287-297
    • Toh, H.1    Horimoto, K.2
  • 26
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • Tseng, P. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3):475494, 2001.
    • (2001) Journal of Optimization Theory and Applications , vol.109 , Issue.3 , pp. 475494
    • Tseng, P.1
  • 27
    • 79251515796 scopus 로고    scopus 로고
    • Solving log-determinant optimization problems by a newton-cg primal proximal point algorithm
    • Wang, Chengjing, Sun, Defeng, and Toh, Kim-Chuan. Solving log-determinant optimization problems by a newton-cg primal proximal point algorithm. SI AM J. Optimization, (20):2994-3013, 2010.
    • (2010) SI AM J. Optimization , Issue.20 , pp. 2994-3013
    • Wang, C.1    Sun, D.2    Toh, K.-C.3
  • 28
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M. and Lin, Y. Model selection and estimation in the Gaussian graphical model. Biometrika, 94(10):19-35, 2007.
    • (2007) Biometrika , vol.94 , Issue.10 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 29
    • 84860650411 scopus 로고    scopus 로고
    • The huge package for high-dimensional undirected graph estimation in r
    • Zhao, Tuo, Liu, Han, Roeder, Kathryn, Lafferty, John, and Wasserman, Larry. The huge package for high-dimensional undirected graph estimation in r. JMLR, (13): 1059-1062, 2012.
    • (2012) JMLR , vol.13 , pp. 1059-1062
    • Zhao, T.1    Liu, H.2    Roeder, K.3    Lafferty, J.4    Wasserman, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.