메뉴 건너뛰기




Volumn 7, Issue 4, 2014, Pages 2448-2487

Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection

Author keywords

Inverse problems; Parameter selection; Proximal splitting; Risk estimation; Sparsity; SURE

Indexed keywords

ALGORITHMS; DIFFERENTIAL EQUATIONS; IMAGE RECONSTRUCTION; INVERSE PROBLEMS; ITERATIVE METHODS; MAPPING; OPTIMIZATION; RISK PERCEPTION;

EID: 84919652783     PISSN: None     EISSN: 19364954     Source Type: Journal    
DOI: 10.1137/140968045     Document Type: Article
Times cited : (135)

References (73)
  • 1
    • 79957473461 scopus 로고    scopus 로고
    • A continuous dynamical Newton-like approach to solving monotone inclusions
    • H. Attouch and B. F. Svaiter, A continuous dynamical Newton-like approach to solving monotone inclusions, SIAM J. Control Optim., 49 (2011), pp. 574-598.
    • (2011) SIAM J. Control Optim , vol.49 , pp. 574-598
    • Attouch, H.1    Svaiter, B.F.2
  • 2
    • 79953843982 scopus 로고    scopus 로고
    • Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix
    • H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix, J. ACM, 58 (2011), 8.
    • (2011) J. ACM , vol.58 , pp. 8
    • Avron, H.1    Toledo, S.2
  • 4
    • 27844477304 scopus 로고    scopus 로고
    • Building robust wavelet estimators for multicomponent images using Stein’s principle
    • A. Benazza-Benyahia and J.-C. Pesquet, Building robust wavelet estimators for multicomponent images using Stein’s principle, IEEE Trans. Image Process., 14 (2005), pp. 1814-1830.
    • (2005) IEEE Trans. Image Process , vol.14 , pp. 1814-1830
    • Benazza-Benyahia, A.1    Pesquet, J.-C.2
  • 6
    • 36348943666 scopus 로고    scopus 로고
    • The SURE-LET approach to image denoising
    • T. Blu and F. Luisier, The SURE-LET approach to image denoising, IEEE Trans. Image Process., 16 (2007), pp. 2778-2786.
    • (2007) IEEE Trans. Image Process , vol.16 , pp. 2778-2786
    • Blu, T.1    Luisier, F.2
  • 7
    • 65349108741 scopus 로고    scopus 로고
    • A data-driven block thresholding approach to wavelet estimation
    • T. T. Cai and H. H. Zhou, A data-driven block thresholding approach to wavelet estimation, Ann. Statist., 37 (2009), pp. 569-595.
    • (2009) Ann. Statist , vol.37 , pp. 569-595
    • Cai, T.T.1    Zhou, H.H.2
  • 8
    • 71049116435 scopus 로고    scopus 로고
    • Exact matrix completion via convex optimization, Found. Comput
    • E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), pp. 717-772.
    • (2009) Math , vol.9 , pp. 717-772
    • Candès, E.J.1    Recht, B.2
  • 9
    • 84883334291 scopus 로고    scopus 로고
    • Unbiased risk estimates for singular value thresholding and spectral estimators
    • E. J. Candès, C. A. Sing-Long, and J. D. Trzasko, Unbiased risk estimates for singular value thresholding and spectral estimators, IEEE Trans. Signal Process., 61 (2013), pp. 4643-4657.
    • (2013) IEEE Trans. Signal Process , vol.61 , pp. 4643-4657
    • Candès, E.J.1    Sing-Long, C.A.2    Trzasko, J.D.3
  • 10
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120-145.
    • (2011) J. Math. Imaging Vision , vol.40 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 12
    • 39449085530 scopus 로고    scopus 로고
    • A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery
    • P. L. Combettes and J.-C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE J. Sel. Topics Signal Process., 1 (2007), pp. 564-574.
    • (2007) IEEE J. Sel. Topics Signal Process , vol.1 , pp. 564-574
    • Combettes, P.L.1    Pesquet, J.-C.2
  • 14
    • 30844438177 scopus 로고    scopus 로고
    • Signal recovery by proximal forward-backward splitting, Multiscale Model
    • P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 1168-1200.
    • (2005) Simul , vol.4 , pp. 1168-1200
    • Combettes, P.L.1    Wajs, V.R.2
  • 15
    • 84990575058 scopus 로고
    • Orthonormal bases of compactly supported wavelets, Comm. Pure Appl
    • I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41 (1988), pp. 909-996.
    • (1988) Math , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 16
    • 84859421114 scopus 로고    scopus 로고
    • Non-local methods with shape-adaptive patches (NLM-SAP)
    • C.-A. Deledalle, V. Duval, and J. Salmon, Non-local methods with shape-adaptive patches (NLM-SAP), J. Math. Imaging Vision, 43 (2012), pp. 103-120.
    • (2012) J. Math. Imaging Vision , vol.43 , pp. 103-120
    • Deledalle, C.-A.1    Duval, V.2    Salmon, J.3
  • 22
    • 0001373024 scopus 로고
    • Stochastic estimation with Z2 noise
    • S. J. Dong and K. F. Liu, Stochastic estimation with Z2 noise, Phys. Lett. B, 328 (1994), pp. 130-136.
    • (1994) Phys. Lett. B , vol.328 , pp. 130-136
    • Dong, S.J.1    Liu, K.F.2
  • 23
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • D. L. Donoho and I. M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc., 90 (1995), pp. 1200-1224.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 24
    • 84884254637 scopus 로고    scopus 로고
    • The degrees of freedom of the lasso for general design matrix, Statist
    • C. Dossal, M. Kachour, M. J. Fadili, G. Peyré, and C. Chesneau, The degrees of freedom of the lasso for general design matrix, Statist. Sinica, 23 (2013), pp. 809-828.
    • (2013) Sinica , vol.23 , pp. 809-828
    • Dossal, C.1    Kachour, M.2    Fadili, M.J.3    Peyré, G.4    Chesneau, C.5
  • 25
    • 80054735923 scopus 로고    scopus 로고
    • A bias-variance approach for the nonlocal means, SIAM
    • V. Duval, J.-F. Aujol, and Y. Gousseau, A bias-variance approach for the nonlocal means, SIAM J. Imaging Sci., 4 (2011), pp. 760-788.
    • (2011) J. Imaging Sci , vol.4 , pp. 760-788
    • Duval, V.1    Aujol, J.-F.2    Gousseau, Y.3
  • 27
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • B. Efron, How biased is the apparent error rate of a prediction rule?, J. Amer. Statist. Assoc., 81 (1986), pp. 461-470.
    • (1986) J. Amer. Statist. Assoc , vol.81 , pp. 461-470
    • Efron, B.1
  • 28
    • 60549117145 scopus 로고    scopus 로고
    • Generalized SURE for exponential families: Applications to regularization
    • Y. C. Eldar, Generalized SURE for exponential families: Applications to regularization, IEEE Trans. Signal Process., 57 (2009), pp. 471-481.
    • (2009) IEEE Trans. Signal Process , vol.57 , pp. 471-481
    • Eldar, Y.C.1
  • 30
    • 0142257025 scopus 로고    scopus 로고
    • Ph.D. thesis, Department of Electrical Engineering, Stanford University, Stanford, CA
    • M. Fazel, Matrix Rank Minimization with Applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University, Stanford, CA, 2002.
    • (2002) Matrix Rank Minimization with Applications
    • Fazel, M.1
  • 32
    • 0002882706 scopus 로고
    • A fast "Monte Carlo cross-validation" procedure for large least squares problems with noisy data
    • D. A. Girard, A fast "Monte Carlo cross-validation" procedure for large least squares problems with noisy data, Numer. Math., 56 (1989), pp. 1-23.
    • (1989) Numer. Math , vol.56 , pp. 1-23
    • Girard, D.A.1
  • 33
    • 79953103015 scopus 로고    scopus 로고
    • The projected GSURE for automatic parameter tuning in iterative shrinkage methods
    • R. Giryes, M. Elad, and Y. C. Eldar, The projected GSURE for automatic parameter tuning in iterative shrinkage methods, Appl. Comput. Harmon. Anal., 30 (2011), pp. 407-422.
    • (2011) Appl. Comput. Harmon. Anal , vol.30 , pp. 407-422
    • Giryes, R.1    Elad, M.2    Eldar, Y.C.3
  • 34
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 37
    • 0001430370 scopus 로고
    • A natural identity for exponential families with applications in multiparameter estimation
    • H. M. Hudson, A natural identity for exponential families with applications in multiparameter estimation, Ann. Statist., 6 (1978), pp. 473-484.
    • (1978) Ann. Statist , vol.6 , pp. 473-484
    • Hudson, H.M.1
  • 38
    • 0032488773 scopus 로고    scopus 로고
    • Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise, Comput. Statist
    • H. M. Hudson and T. Lee, Maximum likelihood restoration and choice of smoothing parameter in deconvolution of image data subject to Poisson noise, Comput. Statist. Data Anal., 26 (1998), pp. 393-410.
    • (1998) Data Anal , vol.26 , pp. 393-410
    • Hudson, H.M.1    Lee, T.2
  • 39
    • 0000462797 scopus 로고
    • A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm
    • M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Comm. Statist. Simulation Comput., 18 (1989), pp. 1059-1076.
    • (1989) Statist. Simulation Comput , vol.18 , pp. 1059-1076
    • Hutchinson, M.F.1
  • 40
    • 64249141055 scopus 로고    scopus 로고
    • On the degrees of freedom in shrinkage estimation
    • K. Kato, On the degrees of freedom in shrinkage estimation, J. Multivariate Anal., 100 (2009), pp. 1338-1352.
    • (2009) J. Multivariate Anal , vol.100 , pp. 1338-1352
    • Kato, K.1
  • 42
    • 84884671380 scopus 로고    scopus 로고
    • Nonsmooth optimization via quasi-Newton methods
    • A. S. Lewis and M. L. Overton, Nonsmooth optimization via quasi-Newton methods, Math. Program., 141 (2013), pp. 135-163.
    • (2013) Math. Program , vol.141 , pp. 135-163
    • Lewis, A.S.1    Overton, M.L.2
  • 43
    • 0036057564 scopus 로고    scopus 로고
    • Twice differentiable spectral functions
    • A. S. Lewis and H. S. Sendov, Twice differentiable spectral functions, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 368-386.
    • (2001) SIAM J. Matrix Anal. Appl , vol.23 , pp. 368-386
    • Lewis, A.S.1    Sendov, H.S.2
  • 44
    • 0000840124 scopus 로고
    • From Stein’s unbiased risk estimates to the method of generalized cross validation
    • K.-C. Li, From Stein’s unbiased risk estimates to the method of generalized cross validation, Ann. Statist., 13 (1985), pp. 1352-1377.
    • (1985) Ann. Statist , vol.13 , pp. 1352-1377
    • Li, K.-C.1
  • 47
    • 36749062004 scopus 로고    scopus 로고
    • Optimal Jacobian accumulation is NP-complete
    • U. Naumann, Optimal Jacobian accumulation is NP-complete, Math. Program., 112 (2008), pp. 427-441.
    • (2008) Math. Program , vol.112 , pp. 427-441
    • Naumann, U.1
  • 48
    • 70449473857 scopus 로고    scopus 로고
    • A SURE approach for digital signal/image deconvolution problems
    • J.-C. Pesquet, A. Benazza-Benyahia, and C. Chaux, A SURE approach for digital signal/image deconvolution problems, IEEE Trans. Signal Process., 57 (2009), pp. 4616-4632.
    • (2009) IEEE Trans. Signal Process , vol.57 , pp. 4616-4632
    • Pesquet, J.-C.1    Benazza-Benyahia, A.2    Chaux, C.3
  • 50
    • 84885036627 scopus 로고    scopus 로고
    • A generalized forward-backward splitting
    • H. Raguet, J. Fadili, and G. Peyré, A generalized forward-backward splitting, SIAM J. Imaging Sci., 6 (2013), pp. 1199-1226.
    • (2013) SIAM J. Imaging Sci , vol.6 , pp. 1199-1226
    • Raguet, H.1    Fadili, J.2    Peyré, G.3
  • 51
    • 50549090016 scopus 로고    scopus 로고
    • Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms
    • S. Ramani, T. Blu, and M. Unser, Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms, IEEE Trans. Image Process., 17 (2008), pp. 1540-1554.
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 1540-1554
    • Ramani, S.1    Blu, T.2    Unser, M.3
  • 52
    • 84864136882 scopus 로고    scopus 로고
    • Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods
    • S. Ramani, Z. Liu, J. Rosen, J.-F. Nielsen, and J. A. Fessler, Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods, IEEE Trans. Image Process., 21 (2012), pp. 3659-3672.
    • (2012) IEEE Trans. Image Process , vol.21 , pp. 3659-3672
    • Ramani, S.1    Liu, Z.2    Rosen, J.3    Nielsen, J.-F.4    Fessler, J.A.5
  • 53
    • 84863238357 scopus 로고    scopus 로고
    • Iterative weighted risk estimation for nonlinear image restoration with analysis priors
    • SPIE, Bellingham, WA
    • S. Ramani, J. Rosen, Z. Liu, and J. A. Fessler, Iterative weighted risk estimation for nonlinear image restoration with analysis priors, in Proceedings of SPIE, Vol. 8296, Computational Imaging 10, SPIE, Bellingham, WA, 2012, 82960N.
    • (2012) Proceedings of SPIE, Vol. 8296, Computational Imaging , vol.10 , pp. 82960N
    • Ramani, S.1    Rosen, J.2    Liu, Z.3    Fessler, J.A.4
  • 54
    • 48349144643 scopus 로고    scopus 로고
    • Optimal denoising in redundant representations
    • M. Raphan and E. P. Simoncelli, Optimal denoising in redundant representations, IEEE Trans. Image Process., 17 (2008), pp. 1342-1352.
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 1342-1352
    • Raphan, M.1    Simoncelli, E.P.2
  • 55
    • 78651479732 scopus 로고    scopus 로고
    • Least squares estimation without priors or supervision
    • M. Raphan and E. P. Simoncelli, Least squares estimation without priors or supervision, Neural Comput., 23 (2011), pp. 374-420.
    • (2011) Neural Comput , vol.23 , pp. 374-420
    • Raphan, M.1    Simoncelli, E.P.2
  • 56
    • 0039644181 scopus 로고
    • Choice of smoothing parameter in deconvolution problems, Contemp
    • J. Rice, Choice of smoothing parameter in deconvolution problems, Contemp. Math., 59 (1986), pp. 137-151.
    • (1986) Math , vol.59 , pp. 137-151
    • Rice, J.1
  • 57
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), pp. 877-898.
    • (1976) SIAM J. Control Optim , vol.14 , pp. 877-898
    • Rockafellar, R.T.1
  • 59
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), pp. 259-268.
    • (1992) Phys. D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 60
    • 0036489055 scopus 로고    scopus 로고
    • Adaptive model selection
    • X. Shen and J. Ye, Adaptive model selection, J. Amer. Statist. Assoc., 97 (2002), pp. 210-221.
    • (2002) J. Amer. Statist. Assoc , vol.97 , pp. 210-221
    • Shen, X.1    Ye, J.2
  • 62
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • C. M. Stein, Estimation of the mean of a multivariate normal distribution, Ann. Statist., 9 (1981), pp. 1135-1151.
    • (1981) Ann. Statist , vol.9 , pp. 1135-1151
    • Stein, C.M.1
  • 63
  • 64
    • 79954994522 scopus 로고    scopus 로고
    • The solution path of the generalized lasso
    • R. J. Tibshirani and J. Taylor, The solution path of the generalized lasso, Ann. Statist., 39 (2011), pp. 1335-1371.
    • (2011) Ann. Statist , vol.39 , pp. 1335-1371
    • Tibshirani, R.J.1    Taylor, J.2
  • 65
    • 84872012577 scopus 로고    scopus 로고
    • Degrees of freedom in lasso problems
    • R. J. Tibshirani and J. Taylor, Degrees of freedom in lasso problems, Ann. Statist., 40 (2012), pp. 1198-1232.
    • (2012) Ann. Statist , vol.40 , pp. 1198-1232
    • Tibshirani, R.J.1    Taylor, J.2
  • 66
    • 84883858239 scopus 로고    scopus 로고
    • Local behavior of sparse analysis regularization: Applications to risk estimation
    • S. Vaiter, C.-A. Deledalle, G. Peyré, C. Dossal, and J. Fadili, Local behavior of sparse analysis regularization: Applications to risk estimation, Appl. Comput. Harmon. Anal., 35 (2013), pp. 433-451.
    • (2013) Appl. Comput. Harmon. Anal , vol.35 , pp. 433-451
    • Vaiter, S.1    Deledalle, C.-A.2    Peyré, G.3    Dossal, C.4    Fadili, J.5
  • 69
    • 80054770404 scopus 로고    scopus 로고
    • Non-local means with dimensionality reduction and SURE-based parameter selection
    • D. Van De Ville and M. Kocher, Non-local means with dimensionality reduction and SURE-based parameter selection, IEEE Trans. Image Process., 9 (2011), pp. 2683-2690.
    • (2011) IEEE Trans. Image Process , vol.9 , pp. 2683-2690
    • Van De Ville, D.1    Kocher, M.2
  • 71
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • J. Ye, On measuring and correcting the effects of data mining and model selection, J. Amer. Statist. Assoc., 93 (1998), pp. 120-131.
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 120-131
    • Ye, J.1
  • 72
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc. Ser. B Stat. Methodol., 68 (2006), pp. 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 73
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • H. Zou, T. Hastie, and R. Tibshirani, On the "degrees of freedom" of the lasso, Ann. Statist., 35 (2007), pp. 2173-2192.
    • (2007) Ann. Statist , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.