메뉴 건너뛰기




Volumn 35, Issue 3, 2013, Pages 433-451

Local behavior of sparse analysis regularization: Applications to risk estimation

Author keywords

1 minimization; Analysis regularization; Degrees of freedom; GSURE; Inverse problems; Local behavior; Sparsity; SURE; Unbiased risk estimation

Indexed keywords

ANALYSIS REGULARIZATION; GSURE; LOCAL BEHAVIOR; RISK ESTIMATION; SPARSITY; SURE;

EID: 84883858239     PISSN: 10635203     EISSN: 1096603X     Source Type: Journal    
DOI: 10.1016/j.acha.2012.11.006     Document Type: Article
Times cited : (37)

References (56)
  • 1
    • 85067935824 scopus 로고    scopus 로고
    • An Introduction to the Mathematical Theory of Inverse Problems
    • Springer-Verlag
    • A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems Appl. Math. Sci. vol. 120 2011 Springer-Verlag
    • (2011) Appl. Math. Sci. , vol.120
    • Kirsch, A.1
  • 2
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • L. Rudin, S. Osher, and E. Fatemi Nonlinear total variation based noise removal algorithms Phys. D 60 1992 259 268
    • (1992) Phys. D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 4
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • M. Nikolova Local strong homogeneity of a regularized estimator SIAM J. Appl. Math. 61 2000 633 658
    • (2000) SIAM J. Appl. Math. , vol.61 , pp. 633-658
    • Nikolova, M.1
  • 5
    • 0034412757 scopus 로고    scopus 로고
    • Structural properties of solutions to total variation regularization problems
    • W. Ring Structural properties of solutions to total variation regularization problems M2AN Math. Model. Numer. Anal. 34 2000 799 810
    • (2000) M2AN Math. Model. Numer. Anal. , vol.34 , pp. 799-810
    • Ring, W.1
  • 6
    • 50949131499 scopus 로고    scopus 로고
    • The discontinuity set of solutions of the TV denoising problem and some extensions
    • V. Caselles, A. Chambolle, and M. Novaga The discontinuity set of solutions of the TV denoising problem and some extensions Multiscale Model. Simul. 6 2008 879 894
    • (2008) Multiscale Model. Simul. , vol.6 , pp. 879-894
    • Caselles, V.1    Chambolle, A.2    Novaga, M.3
  • 7
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • R. Tibshirani Regression shrinkage and selection via the Lasso J. Roy. Statist. Soc. Ser. B 58 1996 267 288
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 9
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis in signal priors
    • M. Elad, P. Milanfar, and R. Rubinstein Analysis versus synthesis in signal priors Inverse Problems 23 2007 947 968
    • (2007) Inverse Problems , vol.23 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 11
    • 79959751915 scopus 로고    scopus 로고
    • Linear convergence rates for Tikhonov regularization with positively homogeneous functionals
    • M. Grasmair Linear convergence rates for Tikhonov regularization with positively homogeneous functionals Inverse Problems 27 2011 075014
    • (2011) Inverse Problems , vol.27 , pp. 075014
    • Grasmair, M.1
  • 14
    • 44849115269 scopus 로고    scopus 로고
    • A theory for sampling signals from a union of subspaces
    • Y. Lu, and M. Do A theory for sampling signals from a union of subspaces IEEE Trans. Signal Process. 56 2008 2334 2345
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 2334-2345
    • Lu, Y.1    Do, M.2
  • 16
    • 0026627404 scopus 로고
    • Sensitivity analysis in nonsmooth optimization
    • D.A. Field, V. Komkov, SIAM Vol. Appl. Math
    • B. Mordukhovich Sensitivity analysis in nonsmooth optimization D.A. Field, V. Komkov, Theoretical Aspects of Industrial Design SIAM Vol. Appl. Math. vol. 58 1992 32 46
    • (1992) Theoretical Aspects of Industrial Design , vol.58 , pp. 32-46
    • Mordukhovich, B.1
  • 18
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • M. Osborne, B. Presnell, and B. Turlach A new approach to variable selection in least squares problems IMA J. Numer. Anal. 20 2000 389
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 20
    • 55349134896 scopus 로고    scopus 로고
    • 1-norm minimization problems when the solution may be sparse
    • 1-norm minimization problems when the solution may be sparse IEEE Trans. Inform. Theory 54 2008 4789 4812
    • (2008) IEEE Trans. Inform. Theory , vol.54 , pp. 4789-4812
    • Donoho, D.1    Tsaig, Y.2
  • 21
    • 79954994522 scopus 로고    scopus 로고
    • The solution path of the generalized lasso
    • R. Tibshirani, and J. Taylor The solution path of the generalized lasso Ann. Statist. 39 2011 1335 1371
    • (2011) Ann. Statist. , vol.39 , pp. 1335-1371
    • Tibshirani, R.1    Taylor, J.2
  • 22
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • B. Efron How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81 1986 461 470
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 24
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Springer-Verlag
    • H. Akaike Information theory and an extension of the maximum likelihood principle Second International Symposium On Information Theory vol. 1 1973 Springer-Verlag 267 281
    • (1973) Second International Symposium on Information Theory , vol.1 , pp. 267-281
    • Akaike, H.1
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Statist. 6 1978 461 464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 26
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. Golub, M. Heath, and G. Wahba Generalized cross-validation as a method for choosing a good ridge parameter Technometrics 1979 215 223
    • (1979) Technometrics , pp. 215-223
    • Golub, G.1    Heath, M.2    Wahba, G.3
  • 27
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • C. Stein Estimation of the mean of a multivariate normal distribution Ann. Statist. 9 1981 1135 1151
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 28
    • 0000840124 scopus 로고
    • From Stein's unbiased risk estimates to the method of generalized cross validation
    • K.-C. Li From Stein's unbiased risk estimates to the method of generalized cross validation Ann. Statist. 13 1985 1352 1377
    • (1985) Ann. Statist. , vol.13 , pp. 1352-1377
    • Li, K.-C.1
  • 29
    • 4944239996 scopus 로고    scopus 로고
    • The estimation of prediction error: Covariance penalties and cross-validation
    • B. Efron The estimation of prediction error: Covariance penalties and cross-validation J. Amer. Statist. Assoc. 99 2004 619 632
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 619-632
    • Efron, B.1
  • 30
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • D. Donoho, and I. Johnstone Adapting to unknown smoothness via wavelet shrinkage J. Amer. Statist. Assoc. 90 1995 1200 1224
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.1    Johnstone, I.2
  • 31
    • 65349108741 scopus 로고    scopus 로고
    • A data-driven block thresholding approach to wavelet estimation
    • T. Cai, and H. Zhou A data-driven block thresholding approach to wavelet estimation Ann. Statist. 37 2009 569 595
    • (2009) Ann. Statist. , vol.37 , pp. 569-595
    • Cai, T.1    Zhou, H.2
  • 32
    • 36348943666 scopus 로고    scopus 로고
    • The SURE-LET approach to image denoising
    • T. Blu, and F. Luisier The SURE-LET approach to image denoising IEEE Trans. Image Process. 16 2007 2778 2786
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 2778-2786
    • Blu, T.1    Luisier, F.2
  • 33
    • 0033408849 scopus 로고    scopus 로고
    • Wavelet shrinkage for correlated data and inverse problems: Adaptivity results
    • I.M. Johnstone Wavelet shrinkage for correlated data and inverse problems: Adaptivity results Statist. Sinica 9 1999 51 83
    • (1999) Statist. Sinica , vol.9 , pp. 51-83
    • Johnstone, I.M.1
  • 35
    • 80054735923 scopus 로고    scopus 로고
    • A bias-variance approach for the non-local means
    • V. Duval, J.-F. Aujol, and Y. Gousseau A bias-variance approach for the non-local means SIAM J. Imaging Sci. 4 2011 760 788
    • (2011) SIAM J. Imaging Sci. , vol.4 , pp. 760-788
    • Duval, V.1    Aujol, J.-F.2    Gousseau, Y.3
  • 37
    • 0039644181 scopus 로고
    • Choice of smoothing parameter in deconvolution problems
    • J. Rice Choice of smoothing parameter in deconvolution problems Contemp. Math. vol. 59 1986 137 151
    • (1986) Contemp. Math. , vol.59 , pp. 137-151
    • Rice, J.1
  • 38
    • 69949174390 scopus 로고    scopus 로고
    • Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint
    • IEEE
    • C. Vonesch, S. Ramani, and M. Unser Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint ICIP 2008 IEEE 665 668
    • (2008) ICIP , pp. 665-668
    • Vonesch, C.1    Ramani, S.2    Unser, M.3
  • 39
    • 0007395303 scopus 로고
    • The 'minimum reconstruction error' choice of regularization parameters: Some more efficient methods and their application to deconvolution problems
    • L. Desbat, and D. Girard The 'minimum reconstruction error' choice of regularization parameters: Some more efficient methods and their application to deconvolution problems SIAM J. Sci. Comput. 16 1995 1387 1403
    • (1995) SIAM J. Sci. Comput. , vol.16 , pp. 1387-1403
    • Desbat, L.1    Girard, D.2
  • 40
    • 60549117145 scopus 로고    scopus 로고
    • Generalized SURE for exponential families: Applications to regularization
    • Y.C. Eldar Generalized SURE for exponential families: Applications to regularization IEEE Trans. Signal Process. 57 2009 471 481
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 471-481
    • Eldar, Y.C.1
  • 41
    • 34548536008 scopus 로고    scopus 로고
    • On the "degrees of freedom" of the lasso
    • H. Zou, T. Hastie, and R. Tibshirani On the "degrees of freedom" of the lasso Ann. Statist. 35 2007 2173 2192
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3
  • 42
    • 84884254637 scopus 로고    scopus 로고
    • The degrees of freedom of penalized l1 minimization
    • doi:10.5705/ss.2011.281 in press
    • M. Kachour, C. Dossal, M. Fadili, G. Peyré, C. Chesneau, The degrees of freedom of penalized l1 minimization, Statist. Sinica (2012), in press, http://dx.doi.org/10.5705/ss.2011.281.
    • (2012) Statist. Sinica
    • Kachour, M.1    Dossal, C.2
  • 45
    • 0030402763 scopus 로고    scopus 로고
    • A SURE-fired way to choose smoothing parameters in ill-conditioned inverse problems
    • IEEE
    • V. Solo A SURE-fired way to choose smoothing parameters in ill-conditioned inverse problems IEEE Int. Conf. Image Process. (ICIP), vol. 3 1996 IEEE 89 92
    • (1996) IEEE Int. Conf. Image Process. (ICIP), Vol. 3 , pp. 89-92
    • Solo, V.1
  • 46
    • 0032351389 scopus 로고    scopus 로고
    • On measuring and correcting the effects of data mining and model selection
    • J. Ye On measuring and correcting the effects of data mining and model selection J. Amer. Statist. Assoc. 1998 120 131
    • (1998) J. Amer. Statist. Assoc. , pp. 120-131
    • Ye, J.1
  • 48
    • 50549090016 scopus 로고    scopus 로고
    • Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms
    • S. Ramani, T. Blu, and M. Unser Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms IEEE Trans. Image Process. 17 2008 1540 1554
    • (2008) IEEE Trans. Image Process. , vol.17 , pp. 1540-1554
    • Ramani, S.1    Blu, T.2    Unser, M.3
  • 49
    • 79953103015 scopus 로고    scopus 로고
    • The projected GSURE for automatic parameter tuning in iterative shrinkage methods
    • R. Giryes, M. Elad, and Y. Eldar The projected GSURE for automatic parameter tuning in iterative shrinkage methods Appl. Comput. Harmon. Anal. 30 2011 407 422
    • (2011) Appl. Comput. Harmon. Anal. , vol.30 , pp. 407-422
    • Giryes, R.1    Elad, M.2    Eldar, Y.3
  • 51
    • 1242352408 scopus 로고    scopus 로고
    • An algorithm for total variation minimization and applications
    • A. Chambolle An algorithm for total variation minimization and applications J. Math. Imaging Vision 20 2004 89 97
    • (2004) J. Math. Imaging Vision , vol.20 , pp. 89-97
    • Chambolle, A.1
  • 52
    • 79953201848 scopus 로고    scopus 로고
    • A first-order primal-dual algorithm for convex problems with applications to imaging
    • A. Chambolle, and T. Pock A first-order primal-dual algorithm for convex problems with applications to imaging J. Math. Imaging Vision 40 2011 120 145
    • (2011) J. Math. Imaging Vision , vol.40 , pp. 120-145
    • Chambolle, A.1    Pock, T.2
  • 54
    • 81255182168 scopus 로고    scopus 로고
    • Parallel ProXimal Algorithm for image restoration using hybrid regularization
    • N. Pustelnik, C. Chaux, and J.-C. Pesquet Parallel ProXimal Algorithm for image restoration using hybrid regularization IEEE Trans. Image Process. 20 2011 2450 2462
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 2450-2462
    • Pustelnik, N.1    Chaux, C.2    Pesquet, J.-C.3
  • 55
    • 84869774172 scopus 로고    scopus 로고
    • Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators
    • P.L. Combettes, and J.-C. Pesquet Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum monotone operators Set-Valued Var. Anal. 20 2012 307 330
    • (2012) Set-Valued Var. Anal. , vol.20 , pp. 307-330
    • Combettes, P.L.1    Pesquet, J.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.