메뉴 건너뛰기




Volumn 283, Issue , 2014, Pages 297-313

A system identification framework for modeling complex combustion dynamics using support vector machines

Author keywords

Combustion; Control model; Engine model; HCCI; Homogeneous charge compression ignition; Identification; Neural networks; Nonlinear regression; Support vector machine

Indexed keywords

ARTIFICIAL INTELLIGENCE; AUTOMOTIVE INDUSTRY; COMBUSTION; COMPLEX NETWORKS; ENGINES; IDENTIFICATION (CONTROL SYSTEMS); IGNITION; INFORMATION SCIENCE; LEARNING SYSTEMS; NEURAL NETWORKS; POWERTRAINS; ROBOTICS;

EID: 84919642176     PISSN: 18761100     EISSN: 18761119     Source Type: Book Series    
DOI: 10.1007/978-3-319-03500-0_19     Document Type: Conference Paper
Times cited : (8)

References (14)
  • 1
    • 85072438525 scopus 로고    scopus 로고
    • An experimental study on premixed-charge compression ignition gasoline engine
    • Aoyama, T., Hattori, Y., Mizuta, J., Sato, Y.: An experimental study on premixed-charge compression ignition gasoline engine. In: SAE Technical Paper 960081 (1996).
    • (1996) SAE Technical Paper 960081
    • Aoyama, T.1    Hattori, Y.2    Mizuta, J.3    Sato, Y.4
  • 6
    • 0037312471 scopus 로고    scopus 로고
    • A note on the universal approximation capability of support vector machines
    • Kluwer Academic Publishers, Boston
    • Hammer, B., Gersmann, K.: A note on the universal approximation capability of support vector machines. In: Neural Processing Letters. Kluwer Academic Publishers, Boston (2003)
    • (2003) Neural Processing Letters
    • Hammer, B.1    Gersmann, K.2
  • 7
    • 25144486629 scopus 로고    scopus 로고
    • Analysis of support vector regression for approximation of complex engineering analyses
    • Clarke, S.M., Griebsch, J.H., Simpson, T.W.: Analysis of support vector regression for approximation of complex engineering analyses. J. Mech. Des. 127, 1077-1087 (2005)
    • (2005) J. Mech. Des , vol.127 , pp. 1077-1087
    • Clarke, S.M.1    Griebsch, J.H.2    Simpson, T.W.3
  • 8
    • 78651585934 scopus 로고    scopus 로고
    • Dynamic modeling of biotechnical process based on online support vector machine
    • Wang, X., Chen A, Du Z J, Pan, F.: Dynamic modeling of biotechnical process based on online support vector machine. J. Comput. 4(3), 251-258 (2009). http://ojs.academypublisher.com/index.php/jcp/article/view/0403251258
    • (2009) J. Comput. , vol.4 , Issue.3 , pp. 251-258
    • Wang, X.1    Chen2    Du, Z.J.3    Pan, F.4
  • 9
    • 79951983943 scopus 로고    scopus 로고
    • Application of support vector regression for developing soft sensors for nonlinear processes. The Can
    • Chitralekha, S.B., Shah, S.L.: Application of support vector regression for developing soft sensors for nonlinear processes. The Can. J. Chem. Eng. 88(6), 899-911 (2010)
    • (2010) J. Chem. Eng , vol.88 , Issue.6 , pp. 899-911
    • Chitralekha, S.B.1    Shah, S.L.2
  • 12
    • 33750599121 scopus 로고    scopus 로고
    • Nonlinear noise reduction of chaotic time series based on multi-dimensional recurrent least squares support vector machines
    • LNCS. Springer, Heidelberg
    • Sun, J., Zhou, Y., Bai, Y., Luo, J.: Nonlinear noise reduction of chaotic time series based on multi-dimensional recurrent least squares support vector machines. In: Neural Information Processing, LNCS. Springer, Heidelberg (2006)
    • (2006) Neural Information Processing
    • Sun, J.1    Zhou, Y.2    Bai, Y.3    Luo, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.