-
1
-
-
77549084912
-
Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface
-
Ahn H.S., Kim H., Jo H., Kang S.H., Chang W.P., Kim M.H. Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface. Int. J. Multiphase Flow 2010, 36:375-384.
-
(2010)
Int. J. Multiphase Flow
, vol.36
, pp. 375-384
-
-
Ahn, H.S.1
Kim, H.2
Jo, H.3
Kang, S.H.4
Chang, W.P.5
Kim, M.H.6
-
2
-
-
84856526720
-
Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids
-
Azizian R., Doroodchi E., Moghtaderi B. Effect of nanoconvection caused by Brownian motion on the enhancement of thermal conductivity in nanofluids. Ind. Eng. Chem. Res. 2011, 10.1021/ie201110k.
-
(2011)
Ind. Eng. Chem. Res.
-
-
Azizian, R.1
Doroodchi, E.2
Moghtaderi, B.3
-
3
-
-
67650732997
-
The effect of particle size on the thermal conductivity of alumina nanofluids
-
Beck M.P., Yuan Y., Warrier P., Teja A.S. The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 2009, 11:1129-1136.
-
(2009)
J. Nanopart. Res.
, vol.11
, pp. 1129-1136
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
4
-
-
77955092055
-
The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures
-
Beck M.P., Yuan Y., Warrier P., Teja A.S. The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol+water mixtures. J. Nanopart. Res. 2010, 12:1469-1477.
-
(2010)
J. Nanopart. Res.
, vol.12
, pp. 1469-1477
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
5
-
-
33645634748
-
Convective transport in nanofluids
-
Buongiorno J. Convective transport in nanofluids. Trans. ASME 2006, 128:240-250.
-
(2006)
Trans. ASME
, vol.128
, pp. 240-250
-
-
Buongiorno, J.1
-
6
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
Buongiorno J., Venerus D.C., Prabhat N., McKrell T., Townsend J., Zhou S.Q. A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 2009, 106:1-14.
-
(2009)
J. Appl. Phys.
, vol.106
, pp. 1-14
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
Zhou, S.Q.6
-
7
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
Das S.K., Putra N., Thiesen P., Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 2003, 125:567-574.
-
(2003)
J. Heat Transfer
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
8
-
-
33751508108
-
A critical review of convective heat transfer of nanofluids
-
Daungthongsuk W., Wongwises S. A critical review of convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 2007, 11:797-817.
-
(2007)
Renew. Sustain. Energy Rev.
, vol.11
, pp. 797-817
-
-
Daungthongsuk, W.1
Wongwises, S.2
-
9
-
-
0037233037
-
The surface science of titanium dioxide
-
Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48:53-229.
-
(2003)
Surf. Sci. Rep.
, vol.48
, pp. 53-229
-
-
Diebold, U.1
-
10
-
-
68149159905
-
Comments on the effect of liquid layering on the thermal conductivity of nanofluids
-
Doroodchi E., Evans T., Moghtaderi B. Comments on the effect of liquid layering on the thermal conductivity of nanofluids. J. Nanopart. Res. 2009, 10.1007/s11051-008-95229.
-
(2009)
J. Nanopart. Res.
-
-
Doroodchi, E.1
Evans, T.2
Moghtaderi, B.3
-
12
-
-
81055157102
-
A response to Murshed et al., J Nanopart Res (2010) 12:2007-2010
-
Evans T., Doroodchi E., Moghtaderi B. A response to Murshed et al., J Nanopart Res (2010) 12:2007-2010. J. Nanopart. Res. 2011, 13:4395-4396.
-
(2011)
J. Nanopart. Res.
, vol.13
, pp. 4395-4396
-
-
Evans, T.1
Doroodchi, E.2
Moghtaderi, B.3
-
13
-
-
79958016364
-
A review of nanofluid stability properties and characterization in stationary conditions
-
Ghadimi A., Saidur R., Metselaar H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transfer 2011, 54:4051-4068.
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 4051-4068
-
-
Ghadimi, A.1
Saidur, R.2
Metselaar, H.S.C.3
-
14
-
-
85011856094
-
The effect of nanoparticle agglomeration on enhanced nanofluidic thermal conductivity
-
Hays A., Marsh C.P., Alvarado J., Franks R. The effect of nanoparticle agglomeration on enhanced nanofluidic thermal conductivity. International Refrigeration and Air Conditioning Conference, July 17-20, 2006 2006.
-
(2006)
International Refrigeration and Air Conditioning Conference, July 17-20, 2006
-
-
Hays, A.1
Marsh, C.P.2
Alvarado, J.3
Franks, R.4
-
15
-
-
56449127481
-
Experimental study of heat conduction in aqueous suspensions of aluminium oxide nanoparticles
-
Ju Y.S., Kim J., Hung M.T. Experimental study of heat conduction in aqueous suspensions of aluminium oxide nanoparticles. J. Heat Transfer 2008, 130:1-6.
-
(2008)
J. Heat Transfer
, vol.130
, pp. 1-6
-
-
Ju, Y.S.1
Kim, J.2
Hung, M.T.3
-
16
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
Li C., Peterson G.P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 2006, 99:1-8.
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 1-8
-
-
Li, C.1
Peterson, G.P.2
-
17
-
-
70349202023
-
A review on development of nanofluid preparation and characterization
-
Li Y., Zhou J., Tung S., Schneider E., Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009, 196:89-101.
-
(2009)
Powder Technol.
, vol.196
, pp. 89-101
-
-
Li, Y.1
Zhou, J.2
Tung, S.3
Schneider, E.4
Xi, S.5
-
18
-
-
56349129214
-
Temperature dependence of thermal conductivity of nanofluids
-
Li Y.H., Qu W., Feng J.C. Temperature dependence of thermal conductivity of nanofluids. Chin. Phys. Lett. 2008, 25:3319-3322.
-
(2008)
Chin. Phys. Lett.
, vol.25
, pp. 3319-3322
-
-
Li, Y.H.1
Qu, W.2
Feng, J.C.3
-
19
-
-
50549103866
-
Thermophysical and electrokinetic properties of nanofluids - a critical review
-
Murshed S.M.S., Leong K.C., Yang C. Thermophysical and electrokinetic properties of nanofluids - a critical review. Appl. Therm. Eng. 2008, 28:2109-2125.
-
(2008)
Appl. Therm. Eng.
, vol.28
, pp. 2109-2125
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
20
-
-
77956616964
-
DEM simulation of aggregation of suspended nanoparticles
-
Peng Z., Doroodchi E., Evans G. DEM simulation of aggregation of suspended nanoparticles. Powder Technol. 2010, 204:91-102.
-
(2010)
Powder Technol.
, vol.204
, pp. 91-102
-
-
Peng, Z.1
Doroodchi, E.2
Evans, G.3
-
21
-
-
84859827028
-
Influence of primary particle size distribution of nanoparticles aggregation and suspension yield stress: a theoretical study
-
Peng Z., Doroodchi E., Evans G. Influence of primary particle size distribution of nanoparticles aggregation and suspension yield stress: a theoretical study. Powder Technol. 2012, 223:3-11.
-
(2012)
Powder Technol.
, vol.223
, pp. 3-11
-
-
Peng, Z.1
Doroodchi, E.2
Evans, G.3
-
22
-
-
84864744290
-
A DEM-based analysis of the influence of aggregate structure on suspension shear yield stress
-
Peng Z., Doroodchi E., Moghtaderi B., Evans G. A DEM-based analysis of the influence of aggregate structure on suspension shear yield stress. Adv. Powder Technol. 2012, 23:437-444.
-
(2012)
Adv. Powder Technol.
, vol.23
, pp. 437-444
-
-
Peng, Z.1
Doroodchi, E.2
Moghtaderi, B.3
Evans, G.4
-
23
-
-
33746933431
-
Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)
-
Prasher R., Phelan P.E., Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006, 6:1529-1534.
-
(2006)
Nano Lett.
, vol.6
, pp. 1529-1534
-
-
Prasher, R.1
Phelan, P.E.2
Bhattacharya, P.3
-
24
-
-
77951854605
-
Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids
-
Timofeeva E.V., Smith D.S., Yu W., France D.M., Singh D., Routbort J.L. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology 2010, 21:215703.
-
(2010)
Nanotechnology
, vol.21
, pp. 215703
-
-
Timofeeva, E.V.1
Smith, D.S.2
Yu, W.3
France, D.M.4
Singh, D.5
Routbort, J.L.6
-
25
-
-
33748262070
-
Critical review of heat transfer characteristics of nanofluids
-
Trisaksri V., Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 2007, 11:512-523.
-
(2007)
Renew. Sustain. Energy Rev.
, vol.11
, pp. 512-523
-
-
Trisaksri, V.1
Wongwises, S.2
-
27
-
-
63749091682
-
Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids
-
Wang X.J., Zhu D.S., Yang S. Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem. Phys. Lett. 2009, 470:107-111.
-
(2009)
Chem. Phys. Lett.
, vol.470
, pp. 107-111
-
-
Wang, X.J.1
Zhu, D.S.2
Yang, S.3
-
28
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
Wang X.Q., Mujumdar A.S. Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 2007, 46:1-19.
-
(2007)
Int. J. Therm. Sci.
, vol.46
, pp. 1-19
-
-
Wang, X.Q.1
Mujumdar, A.S.2
-
29
-
-
33646734940
-
Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanopowder)
-
Wen D., Ding Y. Natural convective heat transfer of suspensions of titanium dioxide nanoparticles (nanopowder). IEEE Trans. Nanotechnol. 2006, 5:220-227.
-
(2006)
IEEE Trans. Nanotechnol.
, vol.5
, pp. 220-227
-
-
Wen, D.1
Ding, Y.2
-
30
-
-
0036537378
-
Thermal conductivity enhancement of suspensions containing nanosized alumina particles
-
Xie H., Wang J., Xi T., Ai F. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 2002, 91:4568-4572.
-
(2002)
J. Appl. Phys.
, vol.91
, pp. 4568-4572
-
-
Xie, H.1
Wang, J.2
Xi, T.3
Ai, F.4
-
31
-
-
84859542682
-
Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles
-
Younes H., Christensen G., Luan X., Hong H., Smith P. Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J. Appl. Phys. 2012, 111:064308.
-
(2012)
J. Appl. Phys.
, vol.111
, pp. 064308
-
-
Younes, H.1
Christensen, G.2
Luan, X.3
Hong, H.4
Smith, P.5
|