-
2
-
-
39649109213
-
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
-
10.1080/01457630701850851 1:CAS:528:DC%2BD1cXit1Clur8%3D
-
Yu WH, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432-60.
-
(2008)
Heat Transf Eng
, vol.29
, pp. 432-460
-
-
Yu, W.H.1
France, D.M.2
Routbort, J.L.3
Choi, S.U.S.4
-
3
-
-
62149128212
-
Review of nanofluids for heat transfer applications
-
10.1016/j.partic.2009.01.007 1:CAS:528:DC%2BD1MXmtlajs70%3D
-
Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141-50.
-
(2009)
Particuology
, vol.7
, pp. 141-150
-
-
Wen, D.1
Lin, G.2
Vafaei, S.3
Zhang, K.4
-
4
-
-
77955244911
-
Nanofluids: From vision to reality through research
-
10.1115/1.3056479
-
Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf Trans ASME. 2009;131(3):133106.
-
(2009)
J Heat Transf Trans ASME
, vol.131
, Issue.3
, pp. 133106
-
-
Choi, S.U.S.1
-
5
-
-
64749113545
-
Review of convective heat transfer enhancement with nanofluids
-
10.1016/j.ijheatmasstransfer.2009.02.006
-
Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187-96.
-
(2009)
Int J Heat Mass Transf
, vol.52
, pp. 3187-3196
-
-
Kakaç, S.1
Pramuanjaroenkij, A.2
-
6
-
-
77955241961
-
Nanofluids: Synthesis, heat conduction, and extension
-
10.1115/1.3056597
-
Wang LQ, Wei X. Nanofluids: synthesis, heat conduction, and extension. J Heat Transf Trans ASME. 2009;131(3):033102.
-
(2009)
J Heat Transf Trans ASME
, vol.131
, Issue.3
, pp. 033102
-
-
Wang, L.Q.1
Wei, X.2
-
7
-
-
70349202023
-
A review on development of nanofluid preparation and characterization
-
10.1016/j.powtec.2009.07.025 1:CAS:528:DC%2BD1MXhtFGjtrvE
-
Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89-101.
-
(2009)
Powder Technol
, vol.196
, pp. 89-101
-
-
Li, Y.1
Zhou, J.2
Tung, S.3
Schneider, E.4
Xi, S.5
-
8
-
-
78349281174
-
Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids
-
10.1155/2010/807610
-
Gowda R, Sun H, Wang P, Charmchi M, Gao F, Gu Z, Budhlall B. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv Mech Eng. 2010;. doi: 10.1155/2010/807610.
-
(2010)
Adv Mech Eng
-
-
Gowda, R.1
Sun, H.2
Wang, P.3
Charmchi, M.4
Gao, F.5
Gu, Z.6
Budhlall, B.7
-
9
-
-
77649233259
-
Enhanced thermal conductivity of nanofluids: A state-of-the-art review
-
10.1007/s10404-009-0524-4
-
Özerinç S, Kakaç S, Yazicioǧlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid. 2010;8:145-70.
-
(2010)
Microfluid Nanofluid
, vol.8
, pp. 145-170
-
-
Özerinç, S.1
Kakaç, S.2
Yazicioǧlu, A.G.3
-
10
-
-
77954312658
-
Nanofluids research: Key issues
-
10.1007/s11671-010-9638-6
-
Wang L, Fan J. Nanofluids research: key issues. Nanoscale Res Lett. 2010;5:1241-52.
-
(2010)
Nanoscale Res Lett
, vol.5
, pp. 1241-1252
-
-
Wang, L.1
Fan, J.2
-
11
-
-
77954082848
-
The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles
-
10.1007/s10973-009-0498-1
-
Masoud Hosseini S, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101:113-8.
-
(2010)
J Therm Anal Calorim
, vol.101
, pp. 113-118
-
-
Masoud Hosseini, S.1
Moghadassi, A.R.2
Henneke, D.3
Elkamel, A.4
-
12
-
-
78651390164
-
Review of heat conduction in nanofluids
-
10.1115/1.4002633
-
Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf Trans ASME. 2011;133(4):040801.
-
(2011)
J Heat Transf Trans ASME
, vol.133
, Issue.4
, pp. 040801
-
-
Fan, J.1
Wang, L.2
-
13
-
-
84255204830
-
Discussion on the thermal conductivity enhancement of nanofluids
-
10.1186/1556-276X-6-124
-
Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124-35.
-
(2011)
Nanoscale Res Lett
, vol.6
, pp. 124-135
-
-
Xie, H.1
Yu, W.2
Li, Y.3
Chen, L.4
-
14
-
-
78651069050
-
A review on applications and challenges of nanofluids
-
10.1016/j.rser.2010.11.035 1:CAS:528:DC%2BC3MXhvVCnsr8%3D
-
Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646-68.
-
(2011)
Renew Sustain Energy Rev.
, vol.15
, pp. 1646-1668
-
-
Saidur, R.1
Leong, K.Y.2
Mohammad, H.A.3
-
15
-
-
77955091243
-
3-propanol nanofluid
-
10.1007/s11051-009-9657-3 1:CAS:528:DC%2BC3cXjtlGhtLc%3D
-
3-propanol nanofluid. J Nanopart Res. 2010;12:1003-14.
-
(2010)
J Nanopart Res
, vol.12
, pp. 1003-1014
-
-
Sommers, A.D.1
Yerkes, K.L.2
-
16
-
-
77249157777
-
Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids
-
10.1021/je900648p 1:CAS:528:DC%2BD1MXhsVWhsbbN
-
Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55:653-61.
-
(2010)
J Chem Eng Data
, vol.55
, pp. 653-661
-
-
Nieto De Castro, C.A.1
Lourenço, M.J.V.2
Ribeiro, A.P.C.3
Langa, E.4
Vieira, S.I.C.5
-
18
-
-
77954472793
-
Investigation on thermodynamic properties of a water-based hematite nanofluid
-
10.1021/je900883j 1:CAS:528:DC%2BC3cXhtlWksrc%3D
-
Wei C, Nan Z, Wang X, Tan Z. Investigation on thermodynamic properties of a water-based hematite nanofluid. J Chem Eng Data. 2010;55:2524-8.
-
(2010)
J Chem Eng Data
, vol.55
, pp. 2524-2528
-
-
Wei, C.1
Nan, Z.2
Wang, X.3
Tan, Z.4
-
19
-
-
67349091484
-
Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface
-
10.1016/j.ijheatfluidflow.2009.02.005 1:CAS:528:DC%2BD1MXptVKlt7k%3D
-
Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow. 2009;30:691-9.
-
(2009)
Int J Heat Fluid Flow
, vol.30
, pp. 691-699
-
-
Pantzali, M.N.1
Kanaris, A.G.2
Antoniadis, K.D.3
Mouza, A.A.4
Paras, S.V.5
-
20
-
-
70449371320
-
Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter
-
10.1002/cjoc.200990209 1:CAS:528:DC%2BD1MXhtVegu7nN
-
Nan Z, Zhang P, Yu A, Wei C, Shi Q, Tan Z. Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter. Chin J Chem. 2009;27:1249-53.
-
(2009)
Chin J Chem
, vol.27
, pp. 1249-1253
-
-
Nan, Z.1
Zhang, P.2
Yu, A.3
Wei, C.4
Shi, Q.5
Tan, Z.6
-
21
-
-
70649097599
-
Specific heat measurement of three nanofluids and development of new correlations
-
10.1115/1.3090813
-
Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf Trans ASME. 2009;131(7):071601.
-
(2009)
J Heat Transf Trans ASME
, vol.131
, Issue.7
, pp. 071601
-
-
Vajjha, R.S.1
Das, D.K.2
-
22
-
-
73949132166
-
Flow loop experiments using polyalphaolefin nanofluids
-
10.2514/1.31033 1:CAS:528:DC%2BD1MXhtlWrtLvK
-
Nelson IC, Banerjee D, Ponnappan R. Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf. 2009;23(4):752-61.
-
(2009)
J Thermophys Heat Transf
, vol.23
, Issue.4
, pp. 752-761
-
-
Nelson, I.C.1
Banerjee, D.2
Ponnappan, R.3
-
24
-
-
47249104612
-
The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)
-
10.1088/0957-4484/19/31/315701 1:STN:280:DC%2BC3MjltVClsg%3D%3D
-
Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.
-
(2008)
Nanotechnology
, vol.19
, pp. 315701
-
-
Amrollahi, A.1
Hamidi, A.A.2
Rashidi, A.M.3
-
25
-
-
46749111001
-
Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant
-
10.1016/j.applthermaleng.2007.11.017 1:CAS:528:DC%2BD1cXosVOjsrw%3D
-
Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774-81.
-
(2008)
Appl Therm Eng
, vol.28
, pp. 1774-1781
-
-
Kulkarni, D.P.1
Vajjha, R.S.2
Das, D.K.3
Oliva, D.4
-
28
-
-
0036181176
-
Uncertainty of the thermal conductivity measurement using the transient hot wire method
-
10.1023/A:1013774922355
-
Labudová G, Vozárová V. Uncertainty of the thermal conductivity measurement using the transient hot wire method. J Therm Anal Calorim. 2002;67:257-65.
-
(2002)
J Therm Anal Calorim
, vol.67
, pp. 257-265
-
-
Labudová, G.1
Vozárová, V.2
-
29
-
-
55149091181
-
Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids
-
10.1007/s10973-008-9185-x 1:CAS:528:DC%2BD1cXhtleitLfK
-
Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94(1):37-43.
-
(2008)
J Therm Anal Calorim
, vol.94
, Issue.1
, pp. 37-43
-
-
Tian, F.1
Sun, L.2
Venart, J.E.S.3
Prasad, R.C.4
Mojumdar, S.C.5
-
30
-
-
79958289112
-
Thermal conductivity measurements of liquids by means of a microcalorimeter
-
10.1007/s10973-010-1169-y
-
Barbés B, Páramo R, Sobrón F, Blanco E, Casanova C. Thermal conductivity measurements of liquids by means of a microcalorimeter. J Therm Anal Calorim. 2011;104:805-12.
-
(2011)
J Therm Anal Calorim
, vol.104
, pp. 805-812
-
-
Barbés, B.1
Páramo, R.2
Sobrón, F.3
Blanco, E.4
Casanova, C.5
-
32
-
-
12744251077
-
New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80
-
10.1016/0040-6031(85)85894-9
-
Le Parlouër P, Rouyer M, Pithon F. New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80. Thermochim Acta. 1985;92:375-8.
-
(1985)
Thermochim Acta
, vol.92
, pp. 375-378
-
-
Le Parlouër, P.1
Rouyer, M.2
Pithon, F.3
-
33
-
-
0042033768
-
Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter
-
10.1016/0040-6031(87)80245-9
-
Pithon F, Rouyer M. Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter. Thermochim Acta. 1987;14:91-6.
-
(1987)
Thermochim Acta
, vol.14
, pp. 91-96
-
-
Pithon, F.1
Rouyer, M.2
-
34
-
-
84897556400
-
Standard reference data for the thermal conductivity of water
-
10.1063/1.555963 1:CAS:528:DyaK2MXnt1yrsrk%3D
-
Ramires MLV, Nieto de Castro CA, Nagasaka Y, Nagashima A, Assael MJ, Wakeham WA. Standard reference data for the thermal conductivity of water. J Phys Chem Ref Data. 1995;24(3):1377-81.
-
(1995)
J Phys Chem Ref Data
, vol.24
, Issue.3
, pp. 1377-1381
-
-
Ramires, M.L.V.1
Nieto De Castro, C.A.2
Nagasaka, Y.3
Nagashima, A.4
Assael, M.J.5
Wakeham, W.A.6
-
35
-
-
0023453811
-
The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method
-
10.1007/BF00500786 1:CAS:528:DyaL1cXislKltQ%3D%3D
-
Assael MJ, Charitidou E, Nieto de Castro CA, Wakeham WA. The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method. Int J Thermophys. 1987;8(6):663-70.
-
(1987)
Int J Thermophys
, vol.8
, Issue.6
, pp. 663-670
-
-
Assael, M.J.1
Charitidou, E.2
Nieto De Castro, C.A.3
Wakeham, W.A.4
-
36
-
-
0003316389
-
Heat capacity of liquids: Volume i - Critical review and recommended values
-
Washington: American Chemical Society and American Institute of Physics
-
Zábranský M, Růžička Jr V, Majer V, Domalski ES. Heat capacity of liquids: volume I - critical review and recommended values. J Phys Chem Ref Data. Monograph No. 6. Washington: American Chemical Society and American Institute of Physics; 1996.
-
(1996)
J Phys Chem Ref Data. Monograph No. 6
-
-
Zábranský, M.1
Růžička Jr., V.2
Majer, V.3
Domalski, E.S.4
-
37
-
-
0345871245
-
Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K
-
10.1023/A:1022318416775
-
Páramo R, Zouine M, Sobrón F, Casanova C. Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int J Thermophys. 2003;24(1):185-99.
-
(2003)
Int J Thermophys
, vol.24
, Issue.1
, pp. 185-199
-
-
Páramo, R.1
Zouine, M.2
Sobrón, F.3
Casanova, C.4
-
38
-
-
33646739701
-
Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
-
10.1063/1.2191571
-
Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.
-
(2006)
J Appl Phys
, vol.99
, pp. 084314
-
-
Li, C.H.1
Peterson, G.P.2
-
39
-
-
0032656511
-
Novel thermal properties of nanostructured materials
-
10.4028/www.scientific.net/MSF.312-314.629
-
Eastman JA, Choi SUS, Li S, Soyez G, Thompson LJ, DiMelfi RJ. Novel thermal properties of nanostructured materials. Mat Sci Forum. 1999;312-314:629-34.
-
(1999)
Mat Sci Forum
, vol.312-314
, pp. 629-634
-
-
Eastman, J.A.1
Choi, S.U.S.2
Li, S.3
Soyez, G.4
Thompson, L.J.5
Dimelfi, R.J.6
-
40
-
-
0033339009
-
Thermal conductivity of nanoparticle-fluid mixture
-
10.2514/2.6486 1:CAS:528:DyaK1MXntFCltrw%3D
-
Wang X, Su X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474-80.
-
(1999)
J Thermophys Heat Transf
, vol.13
, Issue.4
, pp. 474-480
-
-
Wang, X.1
Su, X.2
Choi, S.U.S.3
-
41
-
-
0042418742
-
Temperature dependence of thermal conductivity enhancement for nanofluids
-
10.1115/1.1571080 1:CAS:528:DC%2BD3sXlsFKgtbk%3D
-
Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567-74.
-
(2003)
J Heat Transf
, vol.125
, pp. 567-574
-
-
Das, S.K.1
Putra, N.2
Thiesen, P.3
Roetzel, W.4
-
42
-
-
24144484758
-
Thermal conductivity enhancement of nanofluids by Brownian motion
-
10.1115/1.2033316
-
Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf. 2005;127(8):810.
-
(2005)
ASME J Heat Transf
, vol.127
, Issue.8
, pp. 810
-
-
Chon, C.H.1
Kihm, K.D.2
-
43
-
-
37749004290
-
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
-
10.1103/PhysRevE.76.061203
-
Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV, Sprunt S, Lopatina LM, Selinger JV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:061203.
-
(2007)
Phys Rev e
, vol.76
, pp. 061203
-
-
Timofeeva, E.V.1
Gavrilov, A.N.2
McCloskey, J.M.3
Tolmachev, Y.V.4
Sprunt, S.5
Lopatina, L.M.6
Selinger, J.V.7
-
44
-
-
67650732997
-
The effect of particle size on the thermal conductivity of alumina nanofluids
-
10.1007/s11051-008-9500-2
-
Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;115:1129-36.
-
(2009)
J Nanopart Res
, vol.115
, pp. 1129-1136
-
-
Beck, M.P.1
Yuan, Y.2
Warrier, P.3
Teja, A.S.4
-
45
-
-
77955087026
-
An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids
-
10.1007/s11051-009-9658-2 1:CAS:528:DC%2BC3cXjtlGhur4%3D
-
Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015-31.
-
(2010)
J Nanopart Res
, vol.12
, pp. 1015-1031
-
-
Patel, H.E.1
Sundararajan, T.2
Das, S.K.3
-
47
-
-
33947722121
-
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
-
Zhang Z, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:5593-9.
-
(2007)
Exp Therm Fluid Sci
, vol.31
, pp. 5593-5599
-
-
Zhang, Z.1
Gu, H.2
Fujii, M.3
-
48
-
-
56649120696
-
New temperature dependent thermal conductivity data for water based nanofluids
-
10.1016/j.ijthermalsci.2008.03.009 1:CAS:528:DC%2BD1cXhsVCktLjO
-
Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water based nanofluids. Int J Therm Sci. 2009;48:363-71.
-
(2009)
Int J Therm Sci
, vol.48
, pp. 363-371
-
-
Mintsa, H.A.1
Roy, G.2
Nguyen, C.T.3
Doucet, D.4
-
49
-
-
0032825295
-
Measuring thermal conductivity of fluids containing oxide nanoparticles
-
10.1115/1.2825978 1:CAS:528:DyaK1MXktVyns70%3D
-
Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME. 1999;121:280-9.
-
(1999)
Trans ASME
, vol.121
, pp. 280-289
-
-
Lee, S.1
Choi, S.U.S.2
Li, S.3
Eastman, J.A.4
-
51
-
-
0242582398
-
Thermal conductivity of heterogeneous two component systems
-
10.1021/i160003a005 1:CAS:528:DyaF38Xktl2lsrw%3D
-
Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187-91.
-
(1962)
Ind Eng Chem Fundam
, vol.1
, pp. 187-191
-
-
Hamilton, R.L.1
Crosser, O.K.2
-
52
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
10.1063/1.365209 1:CAS:528:DyaK2sXjt1Wlsr0%3D
-
Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692-9.
-
(1997)
J Appl Phys
, vol.81
, pp. 6692-6699
-
-
Nan, C.W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
53
-
-
2942694254
-
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
-
10.1063/1.1756684 1:CAS:528:DC%2BD2cXktVeiu78%3D
-
Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316-8.
-
(2004)
Appl Phys Lett
, vol.84
, pp. 4316-4318
-
-
Jang, S.P.1
Choi, S.U.S.2
-
54
-
-
70349607220
-
A benchmark study on the thermal conductivity of nanofluids
-
10.1063/1.3245330
-
Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen HS, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding YL, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao JW, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong HP, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang YR, Jin LW, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim JH, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song PX, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen DS, Witharana S, Yang C, Yeh WH, Zhao WH, Zhou SQ. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009;106:094312.
-
(2009)
J Appl Phys
, vol.106
, pp. 094312
-
-
Buongiorno, J.1
Venerus, D.C.2
Prabhat, N.3
McKrell, T.4
Townsend, J.5
Christianson, R.6
Tolmachev, Y.V.7
Keblinski, P.8
Hu, L.W.9
Alvarado, J.L.10
Bang, I.C.11
Bishnoi, S.W.12
Bonetti, M.13
Botz, F.14
Cecere, A.15
Chang, Y.16
Chen, G.17
Chen, H.S.18
Chung, S.J.19
Chyu, M.K.20
Das, S.K.21
Di Paola, R.22
Ding, Y.L.23
Dubois, F.24
Dzido, G.25
Eapen, J.26
Escher, W.27
Funfschilling, D.28
Galand, Q.29
Gao, J.W.30
Gharagozloo, P.E.31
Goodson, K.E.32
Gutierrez, J.G.33
Hong, H.P.34
Horton, M.35
Hwang, K.S.36
Iorio, C.S.37
Jang, S.P.38
Jarzebski, A.B.39
Jiang, Y.R.40
Jin, L.W.41
Kabelac, S.42
Kamath, A.43
Kedzierski, M.A.44
Kieng, L.G.45
Kim, C.46
Kim, J.H.47
Kim, S.48
Lee, S.H.49
Leong, K.C.50
Manna, I.51
Michel, B.52
Ni, R.53
Patel, H.E.54
Philip, J.55
Poulikakos, D.56
Reynaud, C.57
Savino, R.58
Singh, P.K.59
Song, P.X.60
Sundararajan, T.61
Timofeeva, E.62
Tritcak, T.63
Turanov, A.N.64
Van Vaerenbergh, S.65
Wen, D.S.66
Witharana, S.67
Yang, C.68
Yeh, W.H.69
Zhao, W.H.70
Zhou, S.Q.71
more..
-
55
-
-
77956152116
-
The classical nature of thermal conduction in nanofluids
-
10.1115/1.4001304
-
Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf Trans ASME. 2010;132(10):102402.
-
(2010)
J Heat Transf Trans ASME
, vol.132
, Issue.10
, pp. 102402
-
-
Eapen, J.1
Rusconi, R.2
Piazza, R.3
Yip, S.4
|