메뉴 건너뛰기




Volumn 111, Issue 2, 2013, Pages 1615-1625

Thermal conductivity and specific heat capacity measurements of Al 2O3 nanofluids

Author keywords

Coaxial cylinder method; Microcalorimeter; Nanofluid; Specific heat capacity; Thermal conductivity

Indexed keywords

BATCH CELLS; COAXIAL CYLINDERS; CONTINUOUS METHODS; MICROCALORIMETER; NANOFLUIDS; PARTICLE VOLUME FRACTIONS; THERMAL EQUILIBRIUMS;

EID: 84872495590     PISSN: 13886150     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10973-012-2534-9     Document Type: Article
Times cited : (150)

References (55)
  • 2
    • 39649109213 scopus 로고    scopus 로고
    • Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
    • 10.1080/01457630701850851 1:CAS:528:DC%2BD1cXit1Clur8%3D
    • Yu WH, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29:432-60.
    • (2008) Heat Transf Eng , vol.29 , pp. 432-460
    • Yu, W.H.1    France, D.M.2    Routbort, J.L.3    Choi, S.U.S.4
  • 3
    • 62149128212 scopus 로고    scopus 로고
    • Review of nanofluids for heat transfer applications
    • 10.1016/j.partic.2009.01.007 1:CAS:528:DC%2BD1MXmtlajs70%3D
    • Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141-50.
    • (2009) Particuology , vol.7 , pp. 141-150
    • Wen, D.1    Lin, G.2    Vafaei, S.3    Zhang, K.4
  • 4
    • 77955244911 scopus 로고    scopus 로고
    • Nanofluids: From vision to reality through research
    • 10.1115/1.3056479
    • Choi SUS. Nanofluids: from vision to reality through research. J Heat Transf Trans ASME. 2009;131(3):133106.
    • (2009) J Heat Transf Trans ASME , vol.131 , Issue.3 , pp. 133106
    • Choi, S.U.S.1
  • 5
    • 64749113545 scopus 로고    scopus 로고
    • Review of convective heat transfer enhancement with nanofluids
    • 10.1016/j.ijheatmasstransfer.2009.02.006
    • Kakaç S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf. 2009;52:3187-96.
    • (2009) Int J Heat Mass Transf , vol.52 , pp. 3187-3196
    • Kakaç, S.1    Pramuanjaroenkij, A.2
  • 6
    • 77955241961 scopus 로고    scopus 로고
    • Nanofluids: Synthesis, heat conduction, and extension
    • 10.1115/1.3056597
    • Wang LQ, Wei X. Nanofluids: synthesis, heat conduction, and extension. J Heat Transf Trans ASME. 2009;131(3):033102.
    • (2009) J Heat Transf Trans ASME , vol.131 , Issue.3 , pp. 033102
    • Wang, L.Q.1    Wei, X.2
  • 7
    • 70349202023 scopus 로고    scopus 로고
    • A review on development of nanofluid preparation and characterization
    • 10.1016/j.powtec.2009.07.025 1:CAS:528:DC%2BD1MXhtFGjtrvE
    • Li Y, Zhou J, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89-101.
    • (2009) Powder Technol , vol.196 , pp. 89-101
    • Li, Y.1    Zhou, J.2    Tung, S.3    Schneider, E.4    Xi, S.5
  • 8
    • 78349281174 scopus 로고    scopus 로고
    • Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids
    • 10.1155/2010/807610
    • Gowda R, Sun H, Wang P, Charmchi M, Gao F, Gu Z, Budhlall B. Effects of particle surface charge, species, concentration, and dispersion method on the thermal conductivity of nanofluids. Adv Mech Eng. 2010;. doi: 10.1155/2010/807610.
    • (2010) Adv Mech Eng
    • Gowda, R.1    Sun, H.2    Wang, P.3    Charmchi, M.4    Gao, F.5    Gu, Z.6    Budhlall, B.7
  • 9
    • 77649233259 scopus 로고    scopus 로고
    • Enhanced thermal conductivity of nanofluids: A state-of-the-art review
    • 10.1007/s10404-009-0524-4
    • Özerinç S, Kakaç S, Yazicioǧlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid. 2010;8:145-70.
    • (2010) Microfluid Nanofluid , vol.8 , pp. 145-170
    • Özerinç, S.1    Kakaç, S.2    Yazicioǧlu, A.G.3
  • 10
    • 77954312658 scopus 로고    scopus 로고
    • Nanofluids research: Key issues
    • 10.1007/s11671-010-9638-6
    • Wang L, Fan J. Nanofluids research: key issues. Nanoscale Res Lett. 2010;5:1241-52.
    • (2010) Nanoscale Res Lett , vol.5 , pp. 1241-1252
    • Wang, L.1    Fan, J.2
  • 11
    • 77954082848 scopus 로고    scopus 로고
    • The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles
    • 10.1007/s10973-009-0498-1
    • Masoud Hosseini S, Moghadassi AR, Henneke D, Elkamel A. The thermal conductivities enhancement of mono ethylene glycol and paraffin fluids by adding β-SiC nanoparticles. J Therm Anal Calorim. 2010;101:113-8.
    • (2010) J Therm Anal Calorim , vol.101 , pp. 113-118
    • Masoud Hosseini, S.1    Moghadassi, A.R.2    Henneke, D.3    Elkamel, A.4
  • 12
    • 78651390164 scopus 로고    scopus 로고
    • Review of heat conduction in nanofluids
    • 10.1115/1.4002633
    • Fan J, Wang L. Review of heat conduction in nanofluids. J Heat Transf Trans ASME. 2011;133(4):040801.
    • (2011) J Heat Transf Trans ASME , vol.133 , Issue.4 , pp. 040801
    • Fan, J.1    Wang, L.2
  • 13
    • 84255204830 scopus 로고    scopus 로고
    • Discussion on the thermal conductivity enhancement of nanofluids
    • 10.1186/1556-276X-6-124
    • Xie H, Yu W, Li Y, Chen L. Discussion on the thermal conductivity enhancement of nanofluids. Nanoscale Res Lett. 2011;6:124-35.
    • (2011) Nanoscale Res Lett , vol.6 , pp. 124-135
    • Xie, H.1    Yu, W.2    Li, Y.3    Chen, L.4
  • 14
    • 78651069050 scopus 로고    scopus 로고
    • A review on applications and challenges of nanofluids
    • 10.1016/j.rser.2010.11.035 1:CAS:528:DC%2BC3MXhvVCnsr8%3D
    • Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646-68.
    • (2011) Renew Sustain Energy Rev. , vol.15 , pp. 1646-1668
    • Saidur, R.1    Leong, K.Y.2    Mohammad, H.A.3
  • 15
    • 77955091243 scopus 로고    scopus 로고
    • 3-propanol nanofluid
    • 10.1007/s11051-009-9657-3 1:CAS:528:DC%2BC3cXjtlGhtLc%3D
    • 3-propanol nanofluid. J Nanopart Res. 2010;12:1003-14.
    • (2010) J Nanopart Res , vol.12 , pp. 1003-1014
    • Sommers, A.D.1    Yerkes, K.L.2
  • 16
    • 77249157777 scopus 로고    scopus 로고
    • Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids
    • 10.1021/je900648p 1:CAS:528:DC%2BD1MXhsVWhsbbN
    • Nieto de Castro CA, Lourenço MJV, Ribeiro APC, Langa E, Vieira SIC. Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J Chem Eng Data. 2010;55:653-61.
    • (2010) J Chem Eng Data , vol.55 , pp. 653-661
    • Nieto De Castro, C.A.1    Lourenço, M.J.V.2    Ribeiro, A.P.C.3    Langa, E.4    Vieira, S.I.C.5
  • 18
    • 77954472793 scopus 로고    scopus 로고
    • Investigation on thermodynamic properties of a water-based hematite nanofluid
    • 10.1021/je900883j 1:CAS:528:DC%2BC3cXhtlWksrc%3D
    • Wei C, Nan Z, Wang X, Tan Z. Investigation on thermodynamic properties of a water-based hematite nanofluid. J Chem Eng Data. 2010;55:2524-8.
    • (2010) J Chem Eng Data , vol.55 , pp. 2524-2528
    • Wei, C.1    Nan, Z.2    Wang, X.3    Tan, Z.4
  • 19
    • 67349091484 scopus 로고    scopus 로고
    • Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface
    • 10.1016/j.ijheatfluidflow.2009.02.005 1:CAS:528:DC%2BD1MXptVKlt7k%3D
    • Pantzali MN, Kanaris AG, Antoniadis KD, Mouza AA, Paras SV. Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface. Int J Heat Fluid Flow. 2009;30:691-9.
    • (2009) Int J Heat Fluid Flow , vol.30 , pp. 691-699
    • Pantzali, M.N.1    Kanaris, A.G.2    Antoniadis, K.D.3    Mouza, A.A.4    Paras, S.V.5
  • 20
    • 70449371320 scopus 로고    scopus 로고
    • Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter
    • 10.1002/cjoc.200990209 1:CAS:528:DC%2BD1MXhtVegu7nN
    • Nan Z, Zhang P, Yu A, Wei C, Shi Q, Tan Z. Novel synthesis of β-FeOOH nanofluid and determination of its heat capacity by an adiabatic calorimeter. Chin J Chem. 2009;27:1249-53.
    • (2009) Chin J Chem , vol.27 , pp. 1249-1253
    • Nan, Z.1    Zhang, P.2    Yu, A.3    Wei, C.4    Shi, Q.5    Tan, Z.6
  • 21
    • 70649097599 scopus 로고    scopus 로고
    • Specific heat measurement of three nanofluids and development of new correlations
    • 10.1115/1.3090813
    • Vajjha RS, Das DK. Specific heat measurement of three nanofluids and development of new correlations. J Heat Transf Trans ASME. 2009;131(7):071601.
    • (2009) J Heat Transf Trans ASME , vol.131 , Issue.7 , pp. 071601
    • Vajjha, R.S.1    Das, D.K.2
  • 22
    • 73949132166 scopus 로고    scopus 로고
    • Flow loop experiments using polyalphaolefin nanofluids
    • 10.2514/1.31033 1:CAS:528:DC%2BD1MXhtlWrtLvK
    • Nelson IC, Banerjee D, Ponnappan R. Flow loop experiments using polyalphaolefin nanofluids. J Thermophys Heat Transf. 2009;23(4):752-61.
    • (2009) J Thermophys Heat Transf , vol.23 , Issue.4 , pp. 752-761
    • Nelson, I.C.1    Banerjee, D.2    Ponnappan, R.3
  • 24
    • 47249104612 scopus 로고    scopus 로고
    • The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)
    • 10.1088/0957-4484/19/31/315701 1:STN:280:DC%2BC3MjltVClsg%3D%3D
    • Amrollahi A, Hamidi AA, Rashidi AM. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.
    • (2008) Nanotechnology , vol.19 , pp. 315701
    • Amrollahi, A.1    Hamidi, A.A.2    Rashidi, A.M.3
  • 25
    • 46749111001 scopus 로고    scopus 로고
    • Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant
    • 10.1016/j.applthermaleng.2007.11.017 1:CAS:528:DC%2BD1cXosVOjsrw%3D
    • Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminium oxide nanofluids in diesel electric generator as jacket water coolant. Appl Therm Eng. 2008;28:1774-81.
    • (2008) Appl Therm Eng , vol.28 , pp. 1774-1781
    • Kulkarni, D.P.1    Vajjha, R.S.2    Das, D.K.3    Oliva, D.4
  • 28
    • 0036181176 scopus 로고    scopus 로고
    • Uncertainty of the thermal conductivity measurement using the transient hot wire method
    • 10.1023/A:1013774922355
    • Labudová G, Vozárová V. Uncertainty of the thermal conductivity measurement using the transient hot wire method. J Therm Anal Calorim. 2002;67:257-65.
    • (2002) J Therm Anal Calorim , vol.67 , pp. 257-265
    • Labudová, G.1    Vozárová, V.2
  • 29
    • 55149091181 scopus 로고    scopus 로고
    • Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids
    • 10.1007/s10973-008-9185-x 1:CAS:528:DC%2BD1cXhtleitLfK
    • Tian F, Sun L, Venart JES, Prasad RC, Mojumdar SC. Development of a thermal conductivity cell with nanolayer coating for thermal conductivity measurement of fluids. J Therm Anal Calorim. 2008;94(1):37-43.
    • (2008) J Therm Anal Calorim , vol.94 , Issue.1 , pp. 37-43
    • Tian, F.1    Sun, L.2    Venart, J.E.S.3    Prasad, R.C.4    Mojumdar, S.C.5
  • 30
    • 79958289112 scopus 로고    scopus 로고
    • Thermal conductivity measurements of liquids by means of a microcalorimeter
    • 10.1007/s10973-010-1169-y
    • Barbés B, Páramo R, Sobrón F, Blanco E, Casanova C. Thermal conductivity measurements of liquids by means of a microcalorimeter. J Therm Anal Calorim. 2011;104:805-12.
    • (2011) J Therm Anal Calorim , vol.104 , pp. 805-812
    • Barbés, B.1    Páramo, R.2    Sobrón, F.3    Blanco, E.4    Casanova, C.5
  • 32
    • 12744251077 scopus 로고
    • New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80
    • 10.1016/0040-6031(85)85894-9
    • Le Parlouër P, Rouyer M, Pithon F. New experimental vessels for calorimetric investigations of gases and liquids on the Setaram C 80. Thermochim Acta. 1985;92:375-8.
    • (1985) Thermochim Acta , vol.92 , pp. 375-378
    • Le Parlouër, P.1    Rouyer, M.2    Pithon, F.3
  • 33
    • 0042033768 scopus 로고
    • Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter
    • 10.1016/0040-6031(87)80245-9
    • Pithon F, Rouyer M. Vapour pressure, heat of evaporation and thermal conductivity determination by means of the C 80 microcalorimeter. Thermochim Acta. 1987;14:91-6.
    • (1987) Thermochim Acta , vol.14 , pp. 91-96
    • Pithon, F.1    Rouyer, M.2
  • 35
    • 0023453811 scopus 로고
    • The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method
    • 10.1007/BF00500786 1:CAS:528:DyaL1cXislKltQ%3D%3D
    • Assael MJ, Charitidou E, Nieto de Castro CA, Wakeham WA. The thermal conductivity of n-hexane, n-heptane and n-decane by the transient hot-wire method. Int J Thermophys. 1987;8(6):663-70.
    • (1987) Int J Thermophys , vol.8 , Issue.6 , pp. 663-670
    • Assael, M.J.1    Charitidou, E.2    Nieto De Castro, C.A.3    Wakeham, W.A.4
  • 36
    • 0003316389 scopus 로고    scopus 로고
    • Heat capacity of liquids: Volume i - Critical review and recommended values
    • Washington: American Chemical Society and American Institute of Physics
    • Zábranský M, Růžička Jr V, Majer V, Domalski ES. Heat capacity of liquids: volume I - critical review and recommended values. J Phys Chem Ref Data. Monograph No. 6. Washington: American Chemical Society and American Institute of Physics; 1996.
    • (1996) J Phys Chem Ref Data. Monograph No. 6
    • Zábranský, M.1    Růžička Jr., V.2    Majer, V.3    Domalski, E.S.4
  • 37
    • 0345871245 scopus 로고    scopus 로고
    • Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K
    • 10.1023/A:1022318416775
    • Páramo R, Zouine M, Sobrón F, Casanova C. Saturated heat capacities of some linear and branched alkyl-benzenes between 288 and 348 K. Int J Thermophys. 2003;24(1):185-99.
    • (2003) Int J Thermophys , vol.24 , Issue.1 , pp. 185-199
    • Páramo, R.1    Zouine, M.2    Sobrón, F.3    Casanova, C.4
  • 38
    • 33646739701 scopus 로고    scopus 로고
    • Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)
    • 10.1063/1.2191571
    • Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.
    • (2006) J Appl Phys , vol.99 , pp. 084314
    • Li, C.H.1    Peterson, G.P.2
  • 40
    • 0033339009 scopus 로고    scopus 로고
    • Thermal conductivity of nanoparticle-fluid mixture
    • 10.2514/2.6486 1:CAS:528:DyaK1MXntFCltrw%3D
    • Wang X, Su X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13(4):474-80.
    • (1999) J Thermophys Heat Transf , vol.13 , Issue.4 , pp. 474-480
    • Wang, X.1    Su, X.2    Choi, S.U.S.3
  • 41
    • 0042418742 scopus 로고    scopus 로고
    • Temperature dependence of thermal conductivity enhancement for nanofluids
    • 10.1115/1.1571080 1:CAS:528:DC%2BD3sXlsFKgtbk%3D
    • Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567-74.
    • (2003) J Heat Transf , vol.125 , pp. 567-574
    • Das, S.K.1    Putra, N.2    Thiesen, P.3    Roetzel, W.4
  • 42
    • 24144484758 scopus 로고    scopus 로고
    • Thermal conductivity enhancement of nanofluids by Brownian motion
    • 10.1115/1.2033316
    • Chon CH, Kihm KD. Thermal conductivity enhancement of nanofluids by Brownian motion. ASME J Heat Transf. 2005;127(8):810.
    • (2005) ASME J Heat Transf , vol.127 , Issue.8 , pp. 810
    • Chon, C.H.1    Kihm, K.D.2
  • 44
    • 67650732997 scopus 로고    scopus 로고
    • The effect of particle size on the thermal conductivity of alumina nanofluids
    • 10.1007/s11051-008-9500-2
    • Beck MP, Yuan Y, Warrier P, Teja AS. The effect of particle size on the thermal conductivity of alumina nanofluids. J Nanopart Res. 2009;115:1129-36.
    • (2009) J Nanopart Res , vol.115 , pp. 1129-1136
    • Beck, M.P.1    Yuan, Y.2    Warrier, P.3    Teja, A.S.4
  • 45
    • 77955087026 scopus 로고    scopus 로고
    • An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids
    • 10.1007/s11051-009-9658-2 1:CAS:528:DC%2BC3cXjtlGhur4%3D
    • Patel HE, Sundararajan T, Das SK. An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids. J Nanopart Res. 2010;12:1015-31.
    • (2010) J Nanopart Res , vol.12 , pp. 1015-1031
    • Patel, H.E.1    Sundararajan, T.2    Das, S.K.3
  • 46
  • 47
    • 33947722121 scopus 로고    scopus 로고
    • Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
    • Zhang Z, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci. 2007;31:5593-9.
    • (2007) Exp Therm Fluid Sci , vol.31 , pp. 5593-5599
    • Zhang, Z.1    Gu, H.2    Fujii, M.3
  • 48
    • 56649120696 scopus 로고    scopus 로고
    • New temperature dependent thermal conductivity data for water based nanofluids
    • 10.1016/j.ijthermalsci.2008.03.009 1:CAS:528:DC%2BD1cXhsVCktLjO
    • Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water based nanofluids. Int J Therm Sci. 2009;48:363-71.
    • (2009) Int J Therm Sci , vol.48 , pp. 363-371
    • Mintsa, H.A.1    Roy, G.2    Nguyen, C.T.3    Doucet, D.4
  • 49
    • 0032825295 scopus 로고    scopus 로고
    • Measuring thermal conductivity of fluids containing oxide nanoparticles
    • 10.1115/1.2825978 1:CAS:528:DyaK1MXktVyns70%3D
    • Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. Trans ASME. 1999;121:280-9.
    • (1999) Trans ASME , vol.121 , pp. 280-289
    • Lee, S.1    Choi, S.U.S.2    Li, S.3    Eastman, J.A.4
  • 51
    • 0242582398 scopus 로고
    • Thermal conductivity of heterogeneous two component systems
    • 10.1021/i160003a005 1:CAS:528:DyaF38Xktl2lsrw%3D
    • Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems. Ind Eng Chem Fundam. 1962;1:187-91.
    • (1962) Ind Eng Chem Fundam , vol.1 , pp. 187-191
    • Hamilton, R.L.1    Crosser, O.K.2
  • 52
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • 10.1063/1.365209 1:CAS:528:DyaK2sXjt1Wlsr0%3D
    • Nan CW, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81:6692-9.
    • (1997) J Appl Phys , vol.81 , pp. 6692-6699
    • Nan, C.W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 53
    • 2942694254 scopus 로고    scopus 로고
    • Role of Brownian motion in the enhanced thermal conductivity of nanofluids
    • 10.1063/1.1756684 1:CAS:528:DC%2BD2cXktVeiu78%3D
    • Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316-8.
    • (2004) Appl Phys Lett , vol.84 , pp. 4316-4318
    • Jang, S.P.1    Choi, S.U.S.2
  • 55
    • 77956152116 scopus 로고    scopus 로고
    • The classical nature of thermal conduction in nanofluids
    • 10.1115/1.4001304
    • Eapen J, Rusconi R, Piazza R, Yip S. The classical nature of thermal conduction in nanofluids. J Heat Transf Trans ASME. 2010;132(10):102402.
    • (2010) J Heat Transf Trans ASME , vol.132 , Issue.10 , pp. 102402
    • Eapen, J.1    Rusconi, R.2    Piazza, R.3    Yip, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.