메뉴 건너뛰기




Volumn 38, Issue 1, 2015, Pages 27-36

An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation

Author keywords

(G' G) expansion method; Differential difference equation; Fractional derivative

Indexed keywords

DIFFERENCE EQUATIONS; DIFFERENTIAL EQUATIONS; HYPERBOLIC FUNCTIONS;

EID: 84919399370     PISSN: 01704214     EISSN: 10991476     Source Type: Journal    
DOI: 10.1002/mma.3047     Document Type: Article
Times cited : (21)

References (46)
  • 6
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results
    • Jumarie G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Computers & Mathematics with Applications 2006; 51: 1367-1376.
    • (2006) Computers & Mathematics with Applications , vol.51 , pp. 1367-1376
    • Jumarie, G.1
  • 9
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M. Compact finite difference method for the fractional diffusion equation. Journal of Computational Physics 2009; 228: 7792-7804.
    • (2009) Journal of Computational Physics , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 10
    • 55649099424 scopus 로고    scopus 로고
    • A finite element solution for the fractional advection-dispersion equation
    • Huang Q, Huang G, Zhan H. A finite element solution for the fractional advection-dispersion equation. Advances inWater Resources 1578; 31.
    • Advances in Water Resources , vol.31 , pp. 1578
    • Huang, Q.1    Huang, G.2    Zhan, H.3
  • 11
    • 36549063424 scopus 로고    scopus 로고
    • A generalized differential transform method for linear partial differential equations of fractional order
    • Odibat Z, Momani S. A generalized differential transform method for linear partial differential equations of fractional order. Applied Mathematics Letters 2008; 21: 194-199.
    • (2008) Applied Mathematics Letters , vol.21 , pp. 194-199
    • Odibat, Z.1    Momani, S.2
  • 12
    • 33748901201 scopus 로고    scopus 로고
    • The Adomian decomposition method for solving partial differential equations of fractal order in finite domains
    • El-Sayed AMA, Gaber M. The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Physics Letters A 2006; 359: 175-182.
    • (2006) Physics Letters A , vol.359 , pp. 175-182
    • El-Sayed, A.M.A.1    Gaber, M.2
  • 13
    • 70350564868 scopus 로고    scopus 로고
    • The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics
    • Odibat Z, Momani S. The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Computers & Mathematics with Applications 2009; 58: 2199-2208.
    • (2009) Computers & Mathematics with Applications , vol.58 , pp. 2199-2208
    • Odibat, Z.1    Momani, S.2
  • 14
    • 0033702384 scopus 로고    scopus 로고
    • A coupling method of a homotopy technique and a perturbation technique for non-linear problems
    • He JH. A coupling method of a homotopy technique and a perturbation technique for non-linear problems. International Journal of Non-Linear Mechanics 2000; 35: 37-43.
    • (2000) International Journal of Non-Linear Mechanics , vol.35 , pp. 37-43
    • He, J.H.1
  • 15
    • 84864025292 scopus 로고    scopus 로고
    • The first integral method for some time fractional differential equations
    • Lu B. The first integral method for some time fractional differential equations. Journal ofMathematical Analysis and Applications 2012; 395: 684-693.
    • (2012) Journal of Mathematical Analysis and Applications , vol.395 , pp. 684-693
    • Lu, B.1
  • 16
    • 79251635229 scopus 로고    scopus 로고
    • Fractional sub-equation method and its applications to nonlinear fractional PDEs
    • Zhang S, Zhang HQ. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Physics Letters A 2011; 375: 1069-1073.
    • (2011) Physics Letters A , vol.375 , pp. 1069-1073
    • Zhang, S.1    Zhang, H.Q.2
  • 18
    • 79960977916 scopus 로고    scopus 로고
    • A tau approach for solution of the space fractional diffusion equation
    • Saadatmandi A, Dehghan M. A tau approach for solution of the space fractional diffusion equation. Computers & Mathematicswith Applications 2011; 62: 1135-1142.
    • (2011) Computers & Mathematicswith Applications , vol.62 , pp. 1135-1142
    • Saadatmandi, A.1    Dehghan, M.2
  • 20
    • 78649487054 scopus 로고    scopus 로고
    • The solution of the linear fractional partial differential equations using the homotopy analysis method
    • Dehghan M, Manafian J, Saadatmandi A. The solution of the linear fractional partial differential equations using the homotopy analysis method. Zeitschrift fur Naturforschung 2010; 65a: 935-949.
    • (2010) Zeitschrift fur Naturforschung , vol.65 A , pp. 935-949
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 21
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations. Computers & Mathematicswith Applications 2010; 59: 1326-1336.
    • (2010) Computers & Mathematicswith Applications , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 24
    • 47749109857 scopus 로고    scopus 로고
    • Exact traveling wave solutions of the discrete nonlinear Schrodinger equation and the hybrid lattice equation obtained via the exp-function method
    • Dai CQ, Wang YY. Exact traveling wave solutions of the discrete nonlinear Schrodinger equation and the hybrid lattice equation obtained via the exp-function method. Physica Scripta 2008; 78: 015013.
    • (2008) Physica Scripta , vol.78 , pp. 015013
    • Dai, C.Q.1    Wang, Y.Y.2
  • 25
    • 1842842984 scopus 로고    scopus 로고
    • Rational solutions of the Toda lattice equation in Casoratian form
    • Ma WX, You Y. Rational solutions of the Toda lattice equation in Casoratian form. Chaos, Solitons & Fractals 2004; 22: 395-406.
    • (2004) Chaos, Solitons & Fractals , vol.22 , pp. 395-406
    • Ma, W.X.1    You, Y.2
  • 26
    • 70350566156 scopus 로고    scopus 로고
    • The homotopy perturbation method for discontinued problems arising in nanotechnology
    • Zhu SD, Chu YM, Qiu SL. The homotopy perturbation method for discontinued problems arising in nanotechnology. Computers & Mathematics with Applications 2009; 58: 2398-2401.
    • (2009) Computers & Mathematics with Applications , vol.58 , pp. 2398-2401
    • Zhu, S.D.1    Chu, Y.M.2    Qiu, S.L.3
  • 27
  • 28
    • 0037185548 scopus 로고    scopus 로고
    • Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions
    • Hu XB, Ma WX. Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Physics Letters A 2002; 293: 161-165.
    • (2002) Physics Letters A , vol.293 , pp. 161-165
    • Hu, X.B.1    Ma, W.X.2
  • 29
    • 59649106322 scopus 로고    scopus 로고
    • The (G'/G)-expansion method for nonlinear differential-difference equations
    • Zhang S, Dong L, Ba JM, Sun YN. The (G'/G)-expansion method for nonlinear differential-difference equations. Physics Letters A 2009; 373: 905-910.
    • (2009) Physics Letters A , vol.373 , pp. 905-910
    • Zhang, S.1    Dong, L.2    Ba, J.M.3    Sun, Y.N.4
  • 30
    • 77950300524 scopus 로고    scopus 로고
    • Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients
    • Saadatmandi A, Dehghan M. Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Computers & Mathematics with Applications 2010; 59: 2996-3004.
    • (2010) Computers & Mathematics with Applications , vol.59 , pp. 2996-3004
    • Saadatmandi, A.1    Dehghan, M.2
  • 31
    • 74449084990 scopus 로고    scopus 로고
    • The variational iteration method which should be followed
    • He JH, Wu GC, Austin F. The variational iteration method which should be followed. Nonlinear Science Letters A 2010; 1: 1-30.
    • (2010) Nonlinear Science Letters A , vol.1 , pp. 1-30
    • He, J.H.1    Wu, G.C.2    Austin, F.3
  • 32
    • 77949534972 scopus 로고    scopus 로고
    • The (G'/G)-expansion method for a discrete nonlinear Schrodinger equation
    • Zhang S, Dong L, Ba JM, Sun YN. The (G'/G)-expansion method for a discrete nonlinear Schrodinger equation. Pramana - Journal of Physics 2010; 74: 207-218.
    • (2010) Pramana - Journal of Physics , vol.74 , pp. 207-218
    • Zhang, S.1    Dong, L.2    Ba, J.M.3    Sun, Y.N.4
  • 33
    • 84870265361 scopus 로고    scopus 로고
    • (G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics
    • Bin Z. (G'/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Communications in Theoretical Physics 2012; 58: 623-630.
    • (2012) Communications in Theoretical Physics , vol.58 , pp. 623-630
    • Bin, Z.1
  • 34
    • 84869126980 scopus 로고    scopus 로고
    • Exact solutions for nonlinear partial fractional differential equations
    • Gepreel KA, Omran S. Exact solutions for nonlinear partial fractional differential equations. Chinese Physics B 2012; 21: 110204.
    • (2012) Chinese Physics B , vol.21 , pp. 110204
    • Gepreel, K.A.1    Omran, S.2
  • 35
    • 70349212072 scopus 로고    scopus 로고
    • Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative
    • Jumarie G. Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative. Applied Mathematics Letters 2009; 22: 1659-1664.
    • (2009) Applied Mathematics Letters , vol.22 , pp. 1659-1664
    • Jumarie, G.1
  • 36
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • Wu GC, Lee EWM. Fractional variational iteration method and its application. Physics Letters A 2010; 374: 2506-2509.
    • (2010) Physics Letters A , vol.374 , pp. 2506-2509
    • Wu, G.C.1    Lee, E.W.M.2
  • 37
    • 33745082228 scopus 로고    scopus 로고
    • New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations
    • Jumarie G. New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations. Mathematical and ComputerModelling 2006; 44: 231-254.
    • (2006) Mathematical and ComputerModelling , vol.44 , pp. 231-254
    • Jumarie, G.1
  • 38
    • 79955470495 scopus 로고    scopus 로고
    • Fractional complex transformation for fractional differential equations
    • Li ZB, He JH. Fractional complex transformation for fractional differential equations. Computers & Mathematics with Applications 2010; 15: 970-973.
    • (2010) Computers & Mathematics with Applications , vol.15 , pp. 970-973
    • Li, Z.B.1    He, J.H.2
  • 39
    • 77955653153 scopus 로고    scopus 로고
    • A note on the (G'/G)-expansion method again
    • Aslan I. A note on the (G'/G)-expansion method again. AppliedMathematics and Computation 2010; 217: 937-938.
    • (2010) Applied Mathematics and Computation , vol.217 , pp. 937-938
    • Aslan, I.1
  • 40
    • 0007255518 scopus 로고
    • New discrete modified KdV equation
    • Narita K. New discrete modified KdV equation. Progress of Theoretical Physics 1991; 86: 817-824.
    • (1991) Progress of Theoretical Physics , vol.86 , pp. 817-824
    • Narita, K.1
  • 41
    • 79955886370 scopus 로고    scopus 로고
    • N-soliton solution of a lattice equation related to the discrete MKdV equation
    • Narita K. N-soliton solution of a lattice equation related to the discrete MKdV equation. Journal of Mathematical Analysis and Applications 2011; 381: 963-965.
    • (2011) Journal of Mathematical Analysis and Applications , vol.381 , pp. 963-965
    • Narita, K.1
  • 42
    • 0035528432 scopus 로고    scopus 로고
    • Solutions for a system of difference-differential equations related to the self-dual network equation
    • Narita K. Solutions for a system of difference-differential equations related to the self-dual network equation. Progress of Theoretical Physics 2001; 106: 1079-1096.
    • (2001) Progress of Theoretical Physics , vol.106 , pp. 1079-1096
    • Narita, K.1
  • 43
    • 80052037387 scopus 로고    scopus 로고
    • Analytical treatment of some partial differential equations arising in mathematical physics by using the exp-function method
    • Dehghan M, Manafian J, Saadatmandi A. Analytical treatment of some partial differential equations arising in mathematical physics by using the exp-function method. International Journal of Modern Physics B 2011; 25: 2965-2981.
    • (2011) International Journal of Modern Physics B , vol.25 , pp. 2965-2981
    • Dehghan, M.1    Manafian, J.2    Saadatmandi, A.3
  • 44
    • 79960784674 scopus 로고    scopus 로고
    • Application of the exp-function method for solving a partial differential equation arising in biology and population genetics
    • Dehghan M, Heris JM. Application of the exp-function method for solving a partial differential equation arising in biology and population genetics. International Journal for Numerical Methods in Heat and Fluid Flow 2011; 21: 736-753.
    • (2011) International Journal for Numerical Methods in Heat and Fluid Flow , vol.21 , pp. 736-753
    • Dehghan, M.1    Heris, J.M.2
  • 45
  • 46
    • 84889015697 scopus 로고    scopus 로고
    • Some remarks on Exp-function method and its applications-A supplement
    • Aslan I. Some remarks on Exp-function method and its applications-A supplement. Communications in Theoretical Physics 2013; 60: 521-525.
    • (2013) Communications in Theoretical Physics , vol.60 , pp. 521-525
    • Aslan, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.