메뉴 건너뛰기




Volumn 111, Issue 50, 2014, Pages 17827-17832

Direct interactions promote eviction of the Sir3 Heterochromatin protein by the SWI/SNF chromatin remodeling enzyme

Author keywords

BAH; Chromatin remodeling; Heterochromatin; Sir3; SWI SNF

Indexed keywords

ADENOSINE TRIPHOSPHATASE; PROTEIN; SIR3 PROTEIN; SWI SNF PROTEIN; SWI2P PROTEIN; UNCLASSIFIED DRUG; ANAZOLENE SODIUM; FUCHSINE; HETEROCHROMATIN; HISTONE; NUCLEOSOME; OLIGONUCLEOTIDE; PRIMER DNA; SACCHAROMYCES CEREVISIAE PROTEIN; SILENT INFORMATION REGULATOR PROTEIN; SIR3 PROTEIN, S CEREVISIAE; SNF2 PROTEIN, S CEREVISIAE; TRANSCRIPTION FACTOR;

EID: 84919372159     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1420096111     Document Type: Article
Times cited : (12)

References (41)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251-260.
    • (1997) Nature , vol.389 , Issue.6648 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 2
    • 84857427738 scopus 로고    scopus 로고
    • Chromatin and transcription in yeast
    • Rando OJ, Winston F (2012) Chromatin and transcription in yeast. Genetics 190(2):351-387.
    • (2012) Genetics , vol.190 , Issue.2 , pp. 351-387
    • Rando, O.J.1    Winston, F.2
  • 3
    • 33845755946 scopus 로고    scopus 로고
    • Heterochromatin revisited
    • Grewal S I S, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8(1):35-46.
    • (2007) Nat Rev Genet , vol.8 , Issue.1 , pp. 35-46
    • Grewal, S.I.S.1    Jia, S.2
  • 4
    • 33845866637 scopus 로고    scopus 로고
    • H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability
    • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9(1):25-35.
    • (2007) Nat Cell Biol , vol.9 , Issue.1 , pp. 25-35
    • Peng, J.C.1    Karpen, G.H.2
  • 5
    • 63449109369 scopus 로고    scopus 로고
    • Heterochromatic genome stability requires regulators of histone H3 K9 methylation
    • Peng JC, Karpen GH (2009) Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLoS Genet 5(3):e1000435.
    • (2009) PLoS Genet , vol.5 , Issue.3 , pp. e1000435
    • Peng, J.C.1    Karpen, G.H.2
  • 6
    • 84901470319 scopus 로고    scopus 로고
    • Mechanisms of functional promiscuity by HP1 proteins
    • Canzio D, Larson A, Narlikar GJ (2014) Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 24(6):377-386.
    • (2014) Trends Cell Biol , vol.24 , Issue.6 , pp. 377-386
    • Canzio, D.1    Larson, A.2    Narlikar, G.J.3
  • 7
    • 84879767321 scopus 로고    scopus 로고
    • Epigenetics in Saccharomyces cerevisiae
    • Grunstein M, Gasser SM (2013) Epigenetics in Saccharomyces cerevisiae. Cold Spring Harb Perspect Biol 5(7):a017491-a017491.
    • (2013) Cold Spring Harb Perspect Biol , vol.5 , Issue.7 , pp. a017491-a017491
    • Grunstein, M.1    Gasser, S.M.2
  • 8
    • 75149171523 scopus 로고    scopus 로고
    • Silent information regulator 3: The Goldilocks of the silencing complex
    • Norris A, Boeke JD (2010) Silent information regulator 3: The Goldilocks of the silencing complex. Genes Dev 24(2):115-122.
    • (2010) Genes Dev , vol.24 , Issue.2 , pp. 115-122
    • Norris, A.1    Boeke, J.D.2
  • 9
    • 80052437561 scopus 로고    scopus 로고
    • Structural basis for the role of the Sir3 AAA+ domain in silencing: Interaction with Sir4 and unmethylated histone H3K79
    • Ehrentraut S, et al. (2011) Structural basis for the role of the Sir3 AAA+ domain in silencing: Interaction with Sir4 and unmethylated histone H3K79. Genes Dev 25(17):1835-1846.
    • (2011) Genes Dev , vol.25 , Issue.17 , pp. 1835-1846
    • Ehrentraut, S.1
  • 10
    • 84873567117 scopus 로고    scopus 로고
    • Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation
    • Oppikofer M, et al. (2013) Dimerization of Sir3 via its C-terminal winged helix domain is essential for yeast heterochromatin formation. EMBO J 32(3):437-449.
    • (2013) EMBO J , vol.32 , Issue.3 , pp. 437-449
    • Oppikofer, M.1
  • 11
    • 81555212272 scopus 로고    scopus 로고
    • Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution
    • Armache K-J, Garlick JD, Canzio D, Narlikar GJ, Kingston RE (2011) Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. Science 334(6058):977-982.
    • (2011) Science , vol.334 , Issue.6058 , pp. 977-982
    • Armache, K.-J.1    Garlick, J.D.2    Canzio, D.3    Narlikar, G.J.4    Kingston, R.E.5
  • 12
    • 84878129207 scopus 로고    scopus 로고
    • Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA
    • Wang F, et al. (2013) Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA. Proc Natl Acad Sci USA 110(21):8495-8500.
    • (2013) Proc Natl Acad Sci USA , vol.110 , Issue.21 , pp. 8495-8500
    • Wang, F.1
  • 13
    • 84883742201 scopus 로고    scopus 로고
    • The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle
    • Arnaudo N, et al. (2013) The N-terminal acetylation of Sir3 stabilizes its binding to the nucleosome core particle. Nat Struct Mol Biol 20(9):1119-1121.
    • (2013) Nat Struct Mol Biol , vol.20 , Issue.9 , pp. 1119-1121
    • Arnaudo, N.1
  • 14
    • 0032991918 scopus 로고    scopus 로고
    • The BAH (bromo-adjacent homology) domain: A link between DNA methylation, replication and transcriptional regulation
    • Callebaut I, Courvalin J-C, Mornon J-P (1999) The BAH (bromo-adjacent homology) domain: A link between DNA methylation, replication and transcriptional regulation. FEBS Lett 446(1):189-193.
    • (1999) FEBS Lett , vol.446 , Issue.1 , pp. 189-193
    • Callebaut, I.1    Courvalin, J.-C.2    Mornon, J.-P.3
  • 15
    • 0025002966 scopus 로고
    • Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae
    • Johnson LM, Kayne PS, Kahn ES, Grunstein M (1990) Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 87(16):6286-6290.
    • (1990) Proc Natl Acad Sci USA , vol.87 , Issue.16 , pp. 6286-6290
    • Johnson, L.M.1    Kayne, P.S.2    Kahn, E.S.3    Grunstein, M.4
  • 16
    • 37349033583 scopus 로고    scopus 로고
    • Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly
    • Onishi M, Liou G-G, Buchberger JR, Walz T, Moazed D (2007) Role of the conserved Sir3-BAH domain in nucleosome binding and silent chromatin assembly. Mol Cell 28(6):1015-1028.
    • (2007) Mol Cell , vol.28 , Issue.6 , pp. 1015-1028
    • Onishi, M.1    Liou, G.-G.2    Buchberger, J.R.3    Walz, T.4    Moazed, D.5
  • 17
    • 70349170114 scopus 로고    scopus 로고
    • Reconstitution of heterochromatin-dependent transcriptional gene silencing
    • Johnson A, et al. (2009) Reconstitution of heterochromatin-dependent transcriptional gene silencing. Mol Cell 35(6):769-781.
    • (2009) Mol Cell , vol.35 , Issue.6 , pp. 769-781
    • Johnson, A.1
  • 18
    • 44949091416 scopus 로고    scopus 로고
    • A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break
    • Sinha M, Peterson CL (2008) A Rad51 presynaptic filament is sufficient to capture nucleosomal homology during recombinational repair of a DNA double-strand break. Mol Cell 30(6):803-810.
    • (2008) Mol Cell , vol.30 , Issue.6 , pp. 803-810
    • Sinha, M.1    Peterson, C.L.2
  • 19
    • 70149105916 scopus 로고    scopus 로고
    • Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling
    • Sinha M, Watanabe S, Johnson A, Moazed D, Peterson CL (2009) Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138(6):1109-1121.
    • (2009) Cell , vol.138 , Issue.6 , pp. 1109-1121
    • Sinha, M.1    Watanabe, S.2    Johnson, A.3    Moazed, D.4    Peterson, C.L.5
  • 20
    • 43249090629 scopus 로고    scopus 로고
    • The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases
    • Szerlong H, et al. (2008) The HSA domain binds nuclear actin-related proteins to regulate chromatin-remodeling ATPases. Nat Struct Mol Biol 15(5):469-476.
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.5 , pp. 469-476
    • Szerlong, H.1
  • 22
    • 0042671282 scopus 로고    scopus 로고
    • Involvement of actin-related proteins in ATPdependent chromatin remodeling
    • Shen X, Ranallo R, Choi E, Wu C (2003) Involvement of actin-related proteins in ATPdependent chromatin remodeling. Mol Cell 12(1):147-155.
    • (2003) Mol Cell , vol.12 , Issue.1 , pp. 147-155
    • Shen, X.1    Ranallo, R.2    Choi, E.3    Wu, C.4
  • 23
    • 0030782468 scopus 로고    scopus 로고
    • Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays
    • Logie C, Peterson CL (1997) Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays. EMBO J 16(22):6772-6782.
    • (1997) EMBO J , vol.16 , Issue.22 , pp. 6772-6782
    • Logie, C.1    Peterson, C.L.2
  • 24
    • 84907320786 scopus 로고    scopus 로고
    • Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres
    • Swygert SG, et al. (2014) Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nat Commun 5:4751.
    • (2014) Nat Commun , vol.5 , pp. 4751
    • Swygert, S.G.1
  • 25
    • 0021715020 scopus 로고
    • Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae
    • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108(4):845-858.
    • (1984) Genetics , vol.108 , Issue.4 , pp. 845-858
    • Neigeborn, L.1    Carlson, M.2
  • 26
    • 0037442819 scopus 로고    scopus 로고
    • SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF (II) s and the general transcription machinery
    • Sharma VM, Li B, Reese JC (2003) SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF (II) s and the general transcription machinery. Genes Dev 17(4):502-515.
    • (2003) Genes Dev , vol.17 , Issue.4 , pp. 502-515
    • Sharma, V.M.1    Li, B.2    Reese, J.C.3
  • 27
    • 79955949044 scopus 로고    scopus 로고
    • The specificity and topology of chromatin interaction pathways in yeast
    • Lenstra TL, et al. (2011) The specificity and topology of chromatin interaction pathways in yeast. Mol Cell 42(4):536-549.
    • (2011) Mol Cell , vol.42 , Issue.4 , pp. 536-549
    • Lenstra, T.L.1
  • 28
    • 4444257692 scopus 로고    scopus 로고
    • The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae
    • Dror V, Winston F (2004) The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol 24(18):8227-8235.
    • (2004) Mol Cell Biol , vol.24 , Issue.18 , pp. 8227-8235
    • Dror, V.1    Winston, F.2
  • 29
    • 0038799991 scopus 로고    scopus 로고
    • Multiple pathways of recombination induced by doublestrand breaks in Saccharomyces cerevisiae
    • Pâques F, Haber JE (1999) Multiple pathways of recombination induced by doublestrand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 63(2):349-404.
    • (1999) Microbiol Mol Biol Rev , vol.63 , Issue.2 , pp. 349-404
    • Pâques, F.1    Haber, J.E.2
  • 30
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
    • Chai B, Huang J, Cairns BR, Laurent BC (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19(14):1656-1661.
    • (2005) Genes Dev , vol.19 , Issue.14 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 32
    • 73349085934 scopus 로고    scopus 로고
    • An auxin-based degron system for the rapid depletion of proteins in nonplant cells
    • Nishimura K, Fukagawa T, Takisawa H, Kakimoto T, Kanemaki M (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6(12):917-922.
    • (2009) Nat Methods , vol.6 , Issue.12 , pp. 917-922
    • Nishimura, K.1    Fukagawa, T.2    Takisawa, H.3    Kakimoto, T.4    Kanemaki, M.5
  • 33
    • 0026584855 scopus 로고
    • Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription
    • Peterson CL, Herskowitz I (1992) Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68(3):573-583.
    • (1992) Cell , vol.68 , Issue.3 , pp. 573-583
    • Peterson, C.L.1    Herskowitz, I.2
  • 35
    • 59649112785 scopus 로고    scopus 로고
    • The dynamic personality of TATA-binding protein
    • Auble DT (2009) The dynamic personality of TATA-binding protein. Trends Biochem Sci 34(2):49-52.
    • (2009) Trends Biochem Sci , vol.34 , Issue.2 , pp. 49-52
    • Auble, D.T.1
  • 36
    • 84893129292 scopus 로고    scopus 로고
    • Mot1 redistributes TBP from TATA-containing to TATAless promoters
    • Zentner GE, Henikoff S (2013) Mot1 redistributes TBP from TATA-containing to TATAless promoters. Mol Cell Biol 33(24):4996-5004.
    • (2013) Mol Cell Biol , vol.33 , Issue.24 , pp. 4996-5004
    • Zentner, G.E.1    Henikoff, S.2
  • 37
    • 79960647770 scopus 로고    scopus 로고
    • Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP
    • Wollmann P, et al. (2011) Structure and mechanism of the Swi2/Snf2 remodeller Mot1 in complex with its substrate TBP. Nature 475(7356):403-407.
    • (2011) Nature , vol.475 , Issue.7356 , pp. 403-407
    • Wollmann, P.1
  • 38
    • 0028897908 scopus 로고
    • The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication
    • Fox CA, Loo S, Dillin A, Rine J (1995) The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev 9(8):911-924.
    • (1995) Genes Dev , vol.9 , Issue.8 , pp. 911-924
    • Fox, C.A.1    Loo, S.2    Dillin, A.3    Rine, J.4
  • 39
    • 0031002795 scopus 로고    scopus 로고
    • Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex
    • Klemm RD, Austin RJ, Bell SP (1997) Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 88(4):493-502.
    • (1997) Cell , vol.88 , Issue.4 , pp. 493-502
    • Klemm, R.D.1    Austin, R.J.2    Bell, S.P.3
  • 40
    • 0037087587 scopus 로고    scopus 로고
    • The origin recognition complex: From simple origins to complex functions
    • Bell SP (2002) The origin recognition complex: From simple origins to complex functions. Genes Dev 16(6):659-672.
    • (2002) Genes Dev , vol.16 , Issue.6 , pp. 659-672
    • Bell, S.P.1
  • 41
    • 78650609911 scopus 로고    scopus 로고
    • Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication
    • Hickman MA, Rusche LN (2010) Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication. Proc Natl Acad Sci USA 107(45):19384-19389.
    • (2010) Proc Natl Acad Sci USA , vol.107 , Issue.45 , pp. 19384-19389
    • Hickman, M.A.1    Rusche, L.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.