메뉴 건너뛰기




Volumn 33, Issue 30, 2014, Pages 5371-5387

Review of methods for handling confounding by cluster and informative cluster size in clustered data

Author keywords

Conditional maximum likelihood; Confounding by cluster; Contextual effect; Informative cluster size; Poor man's method; Within cluster effect

Indexed keywords

ARTICLE; CLUSTER ANALYSIS; CONFOUNDING BY CLUSTER; COST EFFECTIVENESS ANALYSIS; DATA ANALYSIS; HUMAN; INFORMATIVE CLUSTER SIZE; INTERMETHOD COMPARISON; MATHEMATICAL ANALYSIS; MEDICAL RESEARCH; POPULATION SIZE; PROCESS DEVELOPMENT; SCORING SYSTEM; SOCIOECONOMICS; STATISTICAL MODEL; STATISTICAL PARAMETERS; BIOMETRY; EPIDEMIOLOGY; PROCEDURES; SAMPLE SIZE; STATISTICAL ANALYSIS;

EID: 84918827339     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6277     Document Type: Article
Times cited : (73)

References (65)
  • 2
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalised linear models
    • Liang KY, Zeger SL. Longitudinal data analysis using generalised linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 3
    • 0033008916 scopus 로고    scopus 로고
    • An empirical comparison of several clustered data approaches under confounding due to cluster effects in the analysis of complications of coronary angioplasty
    • Berlin JA, Kimmel SE, Ten Have TR, Sammel MD. An empirical comparison of several clustered data approaches under confounding due to cluster effects in the analysis of complications of coronary angioplasty. Biometrics 1999; 55:470-476.
    • (1999) Biometrics , vol.55 , pp. 470-476
    • Berlin, J.A.1    Kimmel, S.E.2    Ten Have, T.R.3    Sammel, M.D.4
  • 4
    • 0041565373 scopus 로고    scopus 로고
    • Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data
    • Begg MD, Parides MK. Separation of individual-level and cluster-level covariate effects in regression analysis of correlated data. Statistics in Medicine 2003; 22:2591-2602.
    • (2003) Statistics in Medicine , vol.22 , pp. 2591-2602
    • Begg, M.D.1    Parides, M.K.2
  • 6
    • 33750290366 scopus 로고    scopus 로고
    • Separating between and within-cluster covariate effects using conditional and partitioning methods
    • Neuhaus JM, McCulloch CE. Separating between and within-cluster covariate effects using conditional and partitioning methods. Journal of the Royal Statistical Society, Series B 2006; 68:859-872.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 859-872
    • Neuhaus, J.M.1    McCulloch, C.E.2
  • 7
    • 49749134283 scopus 로고    scopus 로고
    • Conditional and generalized estimating equations for the analysis of clustered and longitudinal data
    • Goetgeluk S, Vansteelandt S. Conditional and generalized estimating equations for the analysis of clustered and longitudinal data. Biometrics 2008; 64:772-780.
    • (2008) Biometrics , vol.64 , pp. 772-780
    • Goetgeluk, S.1    Vansteelandt, S.2
  • 8
    • 47849120985 scopus 로고    scopus 로고
    • Between- and within-cluster covariate effects and model misspecification in the analysis of clustered data
    • Shen L, Shao J, Park S, Palta M. Between- and within-cluster covariate effects and model misspecification in the analysis of clustered data. Statistica Sinica 2008; 18:731-748.
    • (2008) Statistica Sinica , vol.18 , pp. 731-748
    • Shen, L.1    Shao, J.2    Park, S.3    Palta, M.4
  • 11
    • 0037366607 scopus 로고    scopus 로고
    • Marginal analyses of clustered data when cluster size is informative
    • Williamson JM, Datta S, Satten GA. Marginal analyses of clustered data when cluster size is informative. Biometrics 2003; 59:36-42.
    • (2003) Biometrics , vol.59 , pp. 36-42
    • Williamson, J.M.1    Datta, S.2    Satten, G.A.3
  • 12
    • 0041833619 scopus 로고    scopus 로고
    • A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes
    • Dunson DB, Chen Z, Harry J. A Bayesian approach for joint modeling of cluster size and subunit-specific outcomes. Biometrics 2003; 59:521-530.
    • (2003) Biometrics , vol.59 , pp. 521-530
    • Dunson, D.B.1    Chen, Z.2    Harry, J.3
  • 13
    • 27744550306 scopus 로고    scopus 로고
    • Comments about joint modelling of cluster size and binary and continuous subunit-specific outcomes
    • Gueorguieva RV. Comments about joint modelling of cluster size and binary and continuous subunit-specific outcomes. Biometrics 2005; 61:862-867.
    • (2005) Biometrics , vol.61 , pp. 862-867
    • Gueorguieva, R.V.1
  • 14
    • 21644474782 scopus 로고    scopus 로고
    • Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes
    • Benhin E, Rao JNK, Scott AJ. Mean estimating equation approach to analysing cluster-correlated data with nonignorable cluster sizes. Biometrika 2005; 92:435-450.
    • (2005) Biometrika , vol.92 , pp. 435-450
    • Benhin, E.1    Rao, J.N.K.2    Scott, A.J.3
  • 15
    • 80052791051 scopus 로고    scopus 로고
    • Informative cluster size for subcluster-level covariates and weighted generalized estimating equations
    • Huang Y, Leroux B. Informative cluster size for subcluster-level covariates and weighted generalized estimating equations. Biometrics 2011; 67:843-851.
    • (2011) Biometrics , vol.67 , pp. 843-851
    • Huang, Y.1    Leroux, B.2
  • 16
    • 79952156779 scopus 로고    scopus 로고
    • Estimation of covariate effects in generalized linear mixed models with informative cluster sizes
    • Neuhaus JM, McCulloch CE. Estimation of covariate effects in generalized linear mixed models with informative cluster sizes. Biometrika 2011; 98:147-162.
    • (2011) Biometrika , vol.98 , pp. 147-162
    • Neuhaus, J.M.1    McCulloch, C.E.2
  • 17
    • 79958760327 scopus 로고    scopus 로고
    • A joint modeling approach to data with informative cluster size: robustness to the cluster size model
    • Chen Z, Zhang B, Albert PS. A joint modeling approach to data with informative cluster size: robustness to the cluster size model. Statistics in Medicine 2011; 30:1825-1836.
    • (2011) Statistics in Medicine , vol.30 , pp. 1825-1836
    • Chen, Z.1    Zhang, B.2    Albert, P.S.3
  • 18
    • 84963132941 scopus 로고
    • A cautionary note on inference for marginal regression with longitudinal data and general correlated response data
    • Pepe MS, Anderson GL. A cautionary note on inference for marginal regression with longitudinal data and general correlated response data. Communications in Statistics and Simulation 1994; 23:939-951.
    • (1994) Communications in Statistics and Simulation , vol.23 , pp. 939-951
    • Pepe, M.S.1    Anderson, G.L.2
  • 19
    • 84892854863 scopus 로고    scopus 로고
    • Inference on the marginal distribution of clustered data with informative cluster size
    • Nevalainen J, Datta S, Oja H. Inference on the marginal distribution of clustered data with informative cluster size. Statistical Papers 2014; 55:71-92.
    • (2014) Statistical Papers , vol.55 , pp. 71-92
    • Nevalainen, J.1    Datta, S.2    Oja, H.3
  • 20
    • 0001042798 scopus 로고
    • Ecological correlations and the behaviour
    • Robinson WS. Ecological correlations and the behaviour. American Sociological Review 1950; 15:351-357.
    • (1950) American Sociological Review , vol.15 , pp. 351-357
    • Robinson, W.S.1
  • 21
    • 85056009156 scopus 로고
    • Durkheim's "suicide" and problems of empirical research
    • Selvin HC. Durkheim's "suicide" and problems of empirical research. American Journal of Sociology 1958; 63:607-618.
    • (1958) American Journal of Sociology , vol.63 , pp. 607-618
    • Selvin, H.C.1
  • 22
    • 84902356925 scopus 로고    scopus 로고
    • Inference for observed clusters when cluster size is informative
    • Seaman SR, Pavlou M, Copas AJ. Inference for observed clusters when cluster size is informative. Biometrics 2014; 70(2):449-456.
    • (2014) Biometrics , vol.70 , Issue.2 , pp. 449-456
    • Seaman, S.R.1    Pavlou, M.2    Copas, A.J.3
  • 23
    • 0031555662 scopus 로고    scopus 로고
    • The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data
    • Verbeke G, Lesaffre E. The effect of misspecifying the random-effects distribution in linear mixed models for longitudinal data. Computational Statistics and Data Analysis 1997; 23:541-556.
    • (1997) Computational Statistics and Data Analysis , vol.23 , pp. 541-556
    • Verbeke, G.1    Lesaffre, E.2
  • 24
    • 82655175462 scopus 로고    scopus 로고
    • Misspecifying the shape of a random effects distribution: why getting it wrong may not matter
    • McCulloch CE, Neuhaus JM. Misspecifying the shape of a random effects distribution: why getting it wrong may not matter. Statistical Science 2011; 26:388-402.
    • (2011) Statistical Science , vol.26 , pp. 388-402
    • McCulloch, C.E.1    Neuhaus, J.M.2
  • 25
    • 84878648473 scopus 로고    scopus 로고
    • Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercepts and slopes
    • Neuhaus JM, McCulloch CE, Boylan R. Estimation of covariate effects in generalized linear mixed models with a misspecified distribution of random intercepts and slopes. Statistics in Medicine 2013; 32:2419-2429.
    • (2013) Statistics in Medicine , vol.32 , pp. 2419-2429
    • Neuhaus, J.M.1    McCulloch, C.E.2    Boylan, R.3
  • 26
    • 0000024102 scopus 로고    scopus 로고
    • Misspecified maximum likelihood estimates and generalised linear mixed models
    • Heagerty PJ, Kurland BF. Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika 2001; 88:973-985.
    • (2001) Biometrika , vol.88 , pp. 973-985
    • Heagerty, P.J.1    Kurland, B.F.2
  • 27
    • 61449148553 scopus 로고    scopus 로고
    • Bias in 2-part mixed models for longitudinal semicontinuous data
    • Su L, Tom BD, Farewell VT. Bias in 2-part mixed models for longitudinal semicontinuous data. Biostatistics 2009; 10:374-389.
    • (2009) Biostatistics , vol.10 , pp. 374-389
    • Su, L.1    Tom, B.D.2    Farewell, V.T.3
  • 28
    • 0346600363 scopus 로고    scopus 로고
    • Oxford Science Publications: New York
    • Pawitan Y. In All Likelihood. Oxford Science Publications: New York, 2001.
    • (2001) In All Likelihood
    • Pawitan, Y.1
  • 31
    • 0031776315 scopus 로고    scopus 로고
    • Between- and within-cluster covariate effects in the analysis of clustered data
    • Neuhaus JM, Kalbfleisch JD. Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics 1998; 54:726-731.
    • (1998) Biometrics , vol.54 , pp. 726-731
    • Neuhaus, J.M.1    Kalbfleisch, J.D.2
  • 32
    • 0037083109 scopus 로고    scopus 로고
    • A review of multilevel theory for ecologic analyses
    • Greenland S. A review of multilevel theory for ecologic analyses. Statistics in Medicine 2002; 21:389-395.
    • (2002) Statistics in Medicine , vol.21 , pp. 389-395
    • Greenland, S.1
  • 33
    • 81355134993 scopus 로고    scopus 로고
    • Robustness of parameter and standard error estimates against ignoring a contextual effect of a subject-level covariate in cluster-randomized trials
    • Korendijk EJH, Hox JJ, Moerbeek M, Maas CJM. Robustness of parameter and standard error estimates against ignoring a contextual effect of a subject-level covariate in cluster-randomized trials. Bahavior Research Methods 2011; 43:1003-1013.
    • (2011) Bahavior Research Methods , vol.43 , pp. 1003-1013
    • Korendijk, E.J.H.1    Hox, J.J.2    Moerbeek, M.3    Maas, C.J.M.4
  • 35
    • 84875266303 scopus 로고    scopus 로고
    • Adjusting for confounding by neighborhood using generalized linear mixed models and complex survey data
    • Brumback BA, Zheng HW, Dailey AB. Adjusting for confounding by neighborhood using generalized linear mixed models and complex survey data. Statistics in Medicine 2013; 32:1313-1324.
    • (2013) Statistics in Medicine , vol.32 , pp. 1313-1324
    • Brumback, B.A.1    Zheng, H.W.2    Dailey, A.B.3
  • 36
    • 84855967811 scopus 로고    scopus 로고
    • A general framework for estimating volume-outcome associations from longitudinal data
    • French B, Farjah F, Flum DR, Heagerty PJ. A general framework for estimating volume-outcome associations from longitudinal data. Statistics in Medicine 2012; 31:366-382.
    • (2012) Statistics in Medicine , vol.31 , pp. 366-382
    • French, B.1    Farjah, F.2    Flum, D.R.3    Heagerty, P.J.4
  • 37
    • 0001831031 scopus 로고
    • Consistent estimates based on partially consistent observations
    • Neyman J, Scott EL. Consistent estimates based on partially consistent observations. Econometrica 1948; 16:1-32.
    • (1948) Econometrica , vol.16 , pp. 1-32
    • Neyman, J.1    Scott, E.L.2
  • 39
    • 0036655505 scopus 로고    scopus 로고
    • Orthogonal parameters and panel data
    • Lancaster T. Orthogonal parameters and panel data. Review of Economic Studies 2002; 69:647-666.
    • (2002) Review of Economic Studies , vol.69 , pp. 647-666
    • Lancaster, T.1
  • 40
    • 85017468853 scopus 로고    scopus 로고
    • Shared-parameter models
    • Fitzmaurice G, Davidian M, Verbeke G, and Molenberghs G (eds). Chapman & Hall/CRC: Boca Raton
    • Albert PS, Follmann DA, Shared-parameter models. In Longitudinal Data Analysis, Fitzmaurice G, Davidian M, Verbeke G, and Molenberghs G (eds). Chapman & Hall/CRC: Boca Raton, 2009; 433-452.
    • (2009) Longitudinal Data Analysis , pp. 433-452
    • Albert, P.S.1    Follmann, D.A.2
  • 41
    • 8744315994 scopus 로고    scopus 로고
    • Model selection, confounder control, and marginal structural models: review and new applications
    • Joffe MM, Ten Have TR, Feldman HI, Kimmel SE. Model selection, confounder control, and marginal structural models: review and new applications. American Statistician 2004; 58:272-279.
    • (2004) American Statistician , vol.58 , pp. 272-279
    • Joffe, M.M.1    Ten Have, T.R.2    Feldman, H.I.3    Kimmel, S.E.4
  • 42
    • 3843067509 scopus 로고    scopus 로고
    • Matching conditional and marginal shapes in binary random intercept models with a bridge distribution function
    • Wang Z, Louis TA. Matching conditional and marginal shapes in binary random intercept models with a bridge distribution function. Biometrika 2003; 90:765-775.
    • (2003) Biometrika , vol.90 , pp. 765-775
    • Wang, Z.1    Louis, T.A.2
  • 43
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: classical confounding vs collider-stratification bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology 2003; 14:300-306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 44
    • 22144491220 scopus 로고    scopus 로고
    • Directly parameterised regression conditioning on being alive: analysis of longitudinal data truncated by deaths
    • Kurland BF, Heagerty PJ. Directly parameterised regression conditioning on being alive: analysis of longitudinal data truncated by deaths. Biostatistics 2005; 6:241-58.
    • (2005) Biostatistics , vol.6 , pp. 241-258
    • Kurland, B.F.1    Heagerty, P.J.2
  • 45
    • 43049090508 scopus 로고    scopus 로고
    • Efficient estimation methods for informative cluster size data
    • Chiang CT, Lee KY. Efficient estimation methods for informative cluster size data. Statistica Sinica 2008; 18:121-133.
    • (2008) Statistica Sinica , vol.18 , pp. 121-133
    • Chiang, C.T.1    Lee, K.Y.2
  • 46
    • 84884251828 scopus 로고    scopus 로고
    • An examination of a method for marginal inference when the cluster size is informative
    • Pavlou M, Seaman SR, Copas AJ. An examination of a method for marginal inference when the cluster size is informative. Statistica Sinica 2013; 23:791-808.
    • (2013) Statistica Sinica , vol.23 , pp. 791-808
    • Pavlou, M.1    Seaman, S.R.2    Copas, A.J.3
  • 47
    • 79961172964 scopus 로고    scopus 로고
    • Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes
    • Wang M, Kong M, Datta S. Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes. Statistical Methods in Medical Research 2011; 20:347-367.
    • (2011) Statistical Methods in Medical Research , vol.20 , pp. 347-367
    • Wang, M.1    Kong, M.2    Datta, S.3
  • 48
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS, Boston R, Farrar JT, Strom BL. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. American Journal of Epidemiology 2003; 158:280-287.
    • (2003) American Journal of Epidemiology , vol.158 , pp. 280-287
    • Cepeda, M.S.1    Boston, R.2    Farrar, J.T.3    Strom, B.L.4
  • 49
    • 17744378170 scopus 로고    scopus 로고
    • Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly
    • Stürmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ. Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal antiinflammatory drugs and short-term mortality in the elderly. American Journal of Epidemiology 2005; 161:891-898.
    • (2005) American Journal of Epidemiology , vol.161 , pp. 891-898
    • Stürmer, T.1    Schneeweiss, S.2    Brookhart, M.A.3    Rothman, K.J.4    Avorn, J.5    Glynn, R.J.6
  • 50
    • 0002512643 scopus 로고
    • A comparison of cluster-specific and population-averaged approaches for analysing correlated binary data
    • Neuhaus JM, Kalbfleisch JD, Hauck WW. A comparison of cluster-specific and population-averaged approaches for analysing correlated binary data. International Statistical Review 1991; 59:25-35.
    • (1991) International Statistical Review , vol.59 , pp. 25-35
    • Neuhaus, J.M.1    Kalbfleisch, J.D.2    Hauck, W.W.3
  • 51
  • 53
    • 0001210894 scopus 로고    scopus 로고
    • Estimation efficiency in a binary mixed-effects model setting
    • Neuhaus JM, Lesperance ML. Estimation efficiency in a binary mixed-effects model setting. Biometrika 1996; 83:441-446.
    • (1996) Biometrika , vol.83 , pp. 441-446
    • Neuhaus, J.M.1    Lesperance, M.L.2
  • 54
    • 0029938345 scopus 로고    scopus 로고
    • Efficiency of regression estimates for clustered data
    • Mancl LA, Leroux BG. Efficiency of regression estimates for clustered data. Biometrics 1996; 52:500-511.
    • (1996) Biometrics , vol.52 , pp. 500-511
    • Mancl, L.A.1    Leroux, B.G.2
  • 55
    • 0029061272 scopus 로고
    • A caveat concerning independence estimating equations with multivariate binary data
    • Fitzmaurice GM. A caveat concerning independence estimating equations with multivariate binary data. Biometrics 1995; 51:309-317.
    • (1995) Biometrics , vol.51 , pp. 309-317
    • Fitzmaurice, G.M.1
  • 57
    • 33845745281 scopus 로고    scopus 로고
    • A diagnostic test for mixing distribution in a generalised linear mixed model
    • Tchetgen EJ, Coull BA. A diagnostic test for mixing distribution in a generalised linear mixed model. Biometrika 2006; 93:1003-1010.
    • (2006) Biometrika , vol.93 , pp. 1003-1010
    • Tchetgen, E.J.1    Coull, B.A.2
  • 58
    • 0000250716 scopus 로고
    • Specification tests in econometrics
    • Hausman JA. Specification tests in econometrics. Econometrica 1978; 46:1251-1271.
    • (1978) Econometrica , vol.46 , pp. 1251-1271
    • Hausman, J.A.1
  • 59
    • 84859167891 scopus 로고    scopus 로고
    • Trends in socioeconomic inequalities in risk of sudden infant death syndrome, other causes of infant mortality, and stillbirth in Scotland: population based study
    • Wood AM, Pasupathy D, Pell JP, Fleming M, Smith GCS. Trends in socioeconomic inequalities in risk of sudden infant death syndrome, other causes of infant mortality, and stillbirth in Scotland: population based study. British Medical Journal 2012; 344:e1552.
    • (2012) British Medical Journal , vol.344 , pp. e1552
    • Wood, A.M.1    Pasupathy, D.2    Pell, J.P.3    Fleming, M.4    Smith, G.C.S.5
  • 61
    • 43749115742 scopus 로고    scopus 로고
    • A signed-rank test for clustered data
    • Datta S, Satten GA. A signed-rank test for clustered data. Biometrics 2008; 64:501-507.
    • (2008) Biometrics , vol.64 , pp. 501-507
    • Datta, S.1    Satten, G.A.2
  • 62
    • 84865225092 scopus 로고    scopus 로고
    • A general class of signed rank tests for clustered data when the cluster size is potentially informative
    • Datta S, Nevalainen J, Oja H. A general class of signed rank tests for clustered data when the cluster size is potentially informative. Journal of Nonparametric Statistics 2012; 24:797-808.
    • (2012) Journal of Nonparametric Statistics , vol.24 , pp. 797-808
    • Datta, S.1    Nevalainen, J.2    Oja, H.3
  • 63
    • 79961167038 scopus 로고    scopus 로고
    • Fitting marginal accelerated failure time models to clustered survival data with potentially informative cluster size
    • Fan J, Datta S. Fitting marginal accelerated failure time models to clustered survival data with potentially informative cluster size. Computational Statistics and Data Analysis 2011; 55:3295-3303.
    • (2011) Computational Statistics and Data Analysis , vol.55 , pp. 3295-3303
    • Fan, J.1    Datta, S.2
  • 64
    • 84864866357 scopus 로고    scopus 로고
    • Components of the indirect effect in vaccine trials: identification of contagion and infectiousness effects
    • VanderWeele TJ, Tchetgen EJ, Halloran ME. Components of the indirect effect in vaccine trials: identification of contagion and infectiousness effects. Epidemiology 2012; 23:751-761.
    • (2012) Epidemiology , vol.23 , pp. 751-761
    • VanderWeele, T.J.1    Tchetgen, E.J.2    Halloran, M.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.