메뉴 건너뛰기




Volumn 54, Issue 9, 2014, Pages 2469-2482

Applicability domain based on ensemble learning in classification and regression analyses

Author keywords

[No Author keywords available]

Indexed keywords

NUMERICAL METHODS;

EID: 84916598358     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci500364e     Document Type: Article
Times cited : (51)

References (36)
  • 2
    • 33244481088 scopus 로고    scopus 로고
    • Three-dimensional QSAR using the k-nearest neighbor method and its interpretation
    • Ajmani, S.; Jadhav, K.; Kulkarni, S. A. Three-dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation. J. Chem. Inf. Model. 2006, 46, 24-31.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 24-31
    • Ajmani, S.1    Jadhav, K.2    Kulkarni, S.A.3
  • 7
    • 23844525967 scopus 로고    scopus 로고
    • Modified ant colony optimization algorithm for variable selection in QSAR modeling: QSAR studies of cyclooxygenase inhibitors
    • Shen, Q.; Jiang, J. H.; Tao, J. C.; Shen, G. L.; Yu, R. Q. Modified Ant Colony Optimization Algorithm for Variable Selection in QSAR Modeling: QSAR Studies of Cyclooxygenase Inhibitors. J. Chem. Inf. Model. 2005, 45, 1024-1029.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 1024-1029
    • Shen, Q.1    Jiang, J.H.2    Tao, J.C.3    Shen, G.L.4    Yu, R.Q.5
  • 8
    • 54249125512 scopus 로고    scopus 로고
    • Critical assessment of QSAR models of environmental toxicity against tetrahymena pyriformis: Focusing on applicability domain and overfitting by variable selection
    • Tetko, I. V.; Sushko, I.; Pandey, A. K.; Zhu, H.; Tropsha, A.; Papa, E.; Oberg, T.; Todeschini, R.; Fourches, D.; Varnek, A. Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis: Focusing on Applicability Domain and Overfitting by Variable Selection. J. Chem. Inf. Model. 2008, 48, 1733-1746.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3    Zhu, H.4    Tropsha, A.5    Papa, E.6    Oberg, T.7    Todeschini, R.8    Fourches, D.9    Varnek, A.10
  • 9
    • 72949085382 scopus 로고    scopus 로고
    • Finding key members in compound libraries by analyzing networks of molecules assembled by structural similarity
    • Lepp, Z.; Huang, C. F.; Okada, T. Finding Key Members in Compound Libraries by Analyzing Networks of Molecules Assembled by Structural Similarity. J. Chem. Inf. Model. 2009, 49, 2429-2443.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2429-2443
    • Lepp, Z.1    Huang, C.F.2    Okada, T.3
  • 10
    • 77049116775 scopus 로고    scopus 로고
    • Local chemometrics for samples and variables: Optimizing calibration and standardization processes
    • Igne, B.; Hurburgh, C. R. Local Chemometrics for Samples and Variables: Optimizing Calibration and Standardization Processes. J. Chemom. 2010, 24, 75-86.
    • (2010) J. Chemom. , vol.24 , pp. 75-86
    • Igne, B.1    Hurburgh, C.R.2
  • 11
    • 20444399504 scopus 로고    scopus 로고
    • Boosting: An ensemble learning tool for compound classification and QSAR modeling
    • Boosting: An Ensemble Learning Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Model. 2005, 45, 786-799.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 786-799
  • 12
  • 13
    • 68149160790 scopus 로고    scopus 로고
    • Predicting the predictability: A unified approach to the applicability domain problem of QSAR models
    • Horvath, D.; Marcou, G.; Varnek, A. Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models. J. Chem. Inf. Model. 2009, 49, 1762-1776.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1762-1776
    • Horvath, D.1    Marcou, G.2    Varnek, A.3
  • 14
    • 79955611348 scopus 로고    scopus 로고
    • Applicability domains and accuracy of prediction of soft sensor models
    • Kaneko, H.; Arakawa, M.; Funatsu, K. Applicability Domains and Accuracy of Prediction of Soft Sensor Models. AIChE J. 2011, 57, 1506-1513.
    • (2011) AIChE J. , vol.57 , pp. 1506-1513
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 15
    • 79955476246 scopus 로고    scopus 로고
    • Novel soft sensor method for detecting completion of transition in industrial polymer processes
    • Kaneko, H.; Arakawa, M.; Funatsu, K. Novel Soft Sensor Method for Detecting Completion of Transition in Industrial Polymer Processes. Comput. Chem. Eng. 2011, 35, 1135-1142.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1135-1142
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 18
    • 78650201311 scopus 로고    scopus 로고
    • The one-class classification approach to data description and to models applicability domain
    • Baskin, I. I.; Kireeva, N.; Varnek, A. The One-Class Classification Approach to Data Description and to Models Applicability Domain. Mol. Inf. 2010, 29, 581-587.
    • (2010) Mol. Inf. , vol.29 , pp. 581-587
    • Baskin, I.I.1    Kireeva, N.2    Varnek, A.3
  • 19
    • 84916636828 scopus 로고    scopus 로고
    • Estimation of predictive accuracy of soft sensor models based on data density
    • Kaneko, H.; Funatsu, K. Estimation of Predictive Accuracy of Soft Sensor Models Based on Data Density. Chemom. Intell. Lab. Syst. 2001, 58, 109-130.
    • (2001) Chemom. Intell. Lab. Syst. , vol.58 , pp. 109-130
    • Kaneko, H.1    Funatsu, K.2
  • 20
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Kaneko, H.; Funatsu, K. A Soft Sensor Method Based on Values Predicted from Multiple Intervals of Time Difference for Improvement and Estimation of Prediction Accuracy. Chemom. Intell. Lab. Syst. 2011, 109, 197-206.
    • (2011) Chemom. Intell. Lab. Syst. , vol.109 , pp. 197-206
    • Kaneko, H.1    Funatsu, K.2
  • 21
    • 84859204703 scopus 로고    scopus 로고
    • Three useful dimensions for domain applicability in QSAR models using random forest
    • Sheridan, R. P. Three Useful Dimensions for Domain Applicability in QSAR Models Using Random Forest. J. Chem. Inf. Model. 2012, 52, 814-823.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 814-823
    • Sheridan, R.P.1
  • 22
    • 84888603687 scopus 로고    scopus 로고
    • Using random forest to model the domain applicability of another random forest model
    • Sheridan, R. P. Using Random Forest To Model the Domain Applicability of Another Random Forest Model. J. Chem. Inf. Model. 2013, 53, 2837-2850.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2837-2850
    • Sheridan, R.P.1
  • 23
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and bayesian ensemble learning for various states in chemical plants
    • Kaneko, H.; Funatsu, K. Adaptive Soft Sensor Based on Online Support Vector Regression and Bayesian Ensemble Learning for Various States in Chemical Plants. Chemom. Intell. Lab. Syst. 2014, 137, 57-66.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 24
    • 1542741028 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery. 4. Prediction of aqueous solubility based on atom contribution approach
    • Hou, T. J.; Xia, K.; Zhang, W.; Xu, X. J. ADME Evaluation in Drug Discovery. 4. Prediction of Aqueous Solubility Based on Atom Contribution Approach. J. Chem. Inf. Comput. Sci. 2004, 44, 266-275.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 266-275
    • Hou, T.J.1    Xia, K.2    Zhang, W.3    Xu, X.J.4
  • 26
    • 1842639123 scopus 로고    scopus 로고
    • A universal molecular descriptor system for prediction of LogP, LogS, LogBB, and absorption
    • Sun, H. A Universal Molecular Descriptor System for Prediction of LogP, LogS, LogBB, and Absorption. J. Chem. Inf. Comput. Sci. 2004, 44, 748-757.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 748-757
    • Sun, H.1
  • 27
    • 2942704287 scopus 로고    scopus 로고
    • Feature selection for descriptor based classification models. 1. Theory and GA-SEC algorithm
    • Wegner, J. K.; Fröhlich, H.; Zell, A. Feature Selection for Descriptor Based Classification Models. 1. Theory and GA-SEC Algorithm. J. Chem. Inf. Comput. Sci. 2004, 44, 921-930.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 921-930
    • Wegner, J.K.1    Fröhlich, H.2    Zell, A.3
  • 29
    • 17844369895 scopus 로고    scopus 로고
    • Generalized fragment-substructure based property prediction method
    • Clark, M. Generalized Fragment-Substructure Based Property Prediction Method. J. Chem. Inf. Model. 2005, 45, 30-38.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 30-38
    • Clark, M.1
  • 30
    • 18344367660 scopus 로고    scopus 로고
    • LINGO an efficient holographic text based method to calculate biophysical properties and intermolecular similarities
    • Vidal, D.; Thormann, M.; Pons, M. LINGO, an Efficient Holographic Text Based Method To Calculate Biophysical Properties and Intermolecular Similarities. J. Chem. Inf. Model. 2005, 45, 386-393.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 386-393
    • Vidal, D.1    Thormann, M.2    Pons, M.3
  • 31
    • 42149192690 scopus 로고    scopus 로고
    • Development of a new regression analysis method using independent component analysis
    • Kaneko, H.; Funatsu, K. Development of a New Regression Analysis Method Using Independent Component Analysis. J. Chem. Inf. Model. 2008, 48, 534-541.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 534-541
    • Kaneko, H.1    Funatsu, K.2
  • 32
    • 84916627915 scopus 로고    scopus 로고
    • accessed March 31, 2014
    • http://www.talete.mi.it/products/dragon-description.htm (accessed March 31, 2014).
  • 33
    • 45949123735 scopus 로고
    • Principal component analysis
    • Wold, S. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37-52.
    • (1987) Chemom. Intell. Lab. Syst. , vol.2 , pp. 37-52
    • Wold, S.1
  • 34
    • 84916627914 scopus 로고    scopus 로고
    • accessed July 17, 2014
    • http://www.cadaster.eu/node/65 (accessed July 17, 2014).
  • 36
    • 84916627913 scopus 로고    scopus 로고
    • accessed July 17, 2014
    • http://www.chemaxon.com/ (accessed July 17, 2014).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.