메뉴 건너뛰기




Volumn 34, Issue 1, 2015, Pages 106-117

Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets

Author keywords

Data adaptive; Ensemble learning; Inverse probability weighting; Longitudinal data; Marginal structural model; Super learning

Indexed keywords

COMPUTER SIMULATION; CONFIDENCE INTERVAL; EPIDEMIOLOGY; HIGHLY ACTIVE ANTIRETROVIRAL THERAPY; HIV INFECTIONS; HUMAN; MACHINE LEARNING; MORTALITY; PROBABILITY; SPAIN; STATISTICAL ANALYSIS; STATISTICAL BIAS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA; TRENDS;

EID: 84914814777     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.6322     Document Type: Article
Times cited : (59)

References (33)
  • 1
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • Hernan MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11(5):561-570.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 561-570
    • Hernan, M.A.1    Brumback, B.2    Robins, J.M.3
  • 2
    • 84880225471 scopus 로고    scopus 로고
    • Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling
    • Neugebauer R, Fireman B, Roy J, Raebel M, Nichols G, O'Connor P. Super learning to hedge against incorrect inference from arbitrary parametric assumptions in marginal structural modeling. Journal of Clinical Epidemiology 2013; 66:S99-S109.
    • (2013) Journal of Clinical Epidemiology , vol.66 , pp. S99-S109
    • Neugebauer, R.1    Fireman, B.2    Roy, J.3    Raebel, M.4    Nichols, G.5    O'Connor, P.6
  • 3
    • 84880246274 scopus 로고    scopus 로고
    • A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation
    • Neugebauer R, Chandra M, Paredes A, Graham D, McCloskey C, Go A. A marginal structural modeling approach with super learning for a study on oral bisphosphonate therapy and atrial fibrillation. Journal of Causal Inference 2013; 1:21-50.
    • (2013) Journal of Causal Inference , vol.1 , pp. 21-50
    • Neugebauer, R.1    Chandra, M.2    Paredes, A.3    Graham, D.4    McCloskey, C.5    Go, A.6
  • 5
    • 84873861518 scopus 로고    scopus 로고
    • Super learner in prediction
    • Technical Report, Division of Biostatistics, University of California Berkeley
    • Polley E, van der Laan M. Super learner in prediction, Technical Report, Division of Biostatistics, University of California Berkeley, 2010.
    • (2010)
    • Polley, E.1    van der Laan, M.2
  • 7
    • 73649107271 scopus 로고    scopus 로고
    • The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals
    • The HIV-CAUSAL Collaboration . The effect of combined antiretroviral therapy on the overall mortality of HIV-infected individuals. AIDS 2010; 24(1):123-137.
    • (2010) AIDS , vol.24 , Issue.1 , pp. 123-137
  • 8
    • 0025695593 scopus 로고
    • Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study
    • D'Agostino R, Lee M, Belanger A, Cupples L, Anderson K, Kannel W. Relation of pooled logistic regression to time dependent Cox regression analysis: the Framingham Heart Study. Statistics in Medicine 1990; 12:1501-1515.
    • (1990) Statistics in Medicine , vol.12 , pp. 1501-1515
    • D'Agostino, R.1    Lee, M.2    Belanger, A.3    Cupples, L.4    Anderson, K.5    Kannel, W.6
  • 9
    • 85056259802 scopus 로고    scopus 로고
    • Estimation of the causal effects of time-varying exposures
    • In Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds). Chapman and Hall/CRC Press: Boca Raton
    • Robins JM, Hernán MA. Estimation of the causal effects of time-varying exposures. In Advances in Longitudinal Data Analysis. Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (eds). Chapman and Hall/CRC Press: Boca Raton, 2009; 553-599.
    • (2009) Advances in Longitudinal Data Analysis , pp. 553-599
    • Robins, J.M.1    Hernán, M.A.2
  • 10
    • 74749097452 scopus 로고    scopus 로고
    • Improved propensity score weighting using machine learning
    • Lee B, Lessler J, Stuart E. Improved propensity score weighting using machine learning. Statistics in Medicine 2009; 29:337-346.
    • (2009) Statistics in Medicine , vol.29 , pp. 337-346
    • Lee, B.1    Lessler, J.2    Stuart, E.3
  • 11
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey D, Ridgeway G, Morral A. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9(4):403-425.
    • (2004) Psychological Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.1    Ridgeway, G.2    Morral, A.3
  • 12
    • 77949901722 scopus 로고    scopus 로고
    • Ensemble learning
    • Polikar R. Ensemble learning. Scholarpedia 2009; 4(1):2776.
    • (2009) Scholarpedia , vol.4 , Issue.1 , pp. 2776
    • Polikar, R.1
  • 13
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistic Surveys 2010; 4:40-79.
    • (2010) Statistic Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 15
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks 1992; 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 16
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regression
    • Breiman L. Stacked regression. Machine Learning 1996; 24:49-64.
    • (1996) Machine Learning , vol.24 , pp. 49-64
    • Breiman, L.1
  • 17
    • 0003895851 scopus 로고    scopus 로고
    • 4th edn. Springer: New York [Accessed on 15 October 2013].
    • Venables WN, Ripley BD. Modern Applied Statistics with S 4th edn. Springer: New York, 2002. http://www.stats.ox.ac.uk/pub/MASS4 [Accessed on 15 October 2013].
    • (2002) Modern Applied Statistics with S
    • Venables, W.N.1    Ripley, B.D.2
  • 23
    • 84914820056 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing: Vienna
    • Austria [Accessed on 15 October 2013].
    • Development Core Team, R. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing: Vienna, Austria, 2012. URL http://www.R-project.org [Accessed on 15 October 2013].
    • (2012) R: A Language and Environment for Statistical Computing
  • 24
    • 84872773577 scopus 로고    scopus 로고
    • SuperLearner: super learner prediction
    • R package version 2.0-9. [Accessed on 15 October 2013].
    • Polley E. SuperLearner: super learner prediction, 2012. URL http://CRAN.R-project.org/package=SuperLearner, R package version 2.0-9. [Accessed on 15 October 2013].
    • (2012)
    • Polley, E.1
  • 25
    • 84914818909 scopus 로고    scopus 로고
    • V-fold cross-validation and V-fold penalization in least-squares density estimation
    • eprint arXiv:1210.5830.
    • Arlot S, Lerasle M. V-fold cross-validation and V-fold penalization in least-squares density estimation, 2012. eprint arXiv:1210.5830.
    • (2012)
    • Arlot, S.1    Lerasle, M.2
  • 27
    • 0142186280 scopus 로고    scopus 로고
    • Determinants of survival following HIV-1 seroconversion after the introduction of HAART
    • Babiker A, Bhaskaran K, Darbyshire J, Pezzotti P, Porter K, Walker A. Determinants of survival following HIV-1 seroconversion after the introduction of HAART. Lancet 2003; 362:1267-1274.
    • (2003) Lancet , vol.362 , pp. 1267-1274
    • Babiker, A.1    Bhaskaran, K.2    Darbyshire, J.3    Pezzotti, P.4    Porter, K.5    Walker, A.6
  • 28
    • 14644419415 scopus 로고    scopus 로고
    • Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples
    • University of California, Berkeley, November .
    • van der Laan M, Dudoit S. Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples, Division of Biostatistics, University of California, Berkeley, November 2003.
    • (2003) Division of Biostatistics
    • van der Laan, M.1    Dudoit, S.2
  • 29
    • 84914814302 scopus 로고    scopus 로고
    • Robust estimation of inverse probability weights for marginal structural models
    • Princeton University [Accessed on 15 October 2013] May.
    • Imai K, Ratkovic M. Robust estimation of inverse probability weights for marginal structural models, Princeton University, URL http://imai.princeton.edu/research/MSM.html [Accessed on 15 October 2013] May 2013.
    • (2013)
    • Imai, K.1    Ratkovic, M.2
  • 32
    • 77953150321 scopus 로고    scopus 로고
    • Collaborative double robust penalized targeted maximum likelihood estimation
    • van der Laan M, Gruber S. Collaborative double robust penalized targeted maximum likelihood estimation. The International Journal of Biostatistics 2010; 6(1):1-70.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.1 , pp. 1-70
    • van der Laan, M.1    Gruber, S.2
  • 33
    • 77953143090 scopus 로고    scopus 로고
    • An application of collaborative targeted maximum likelihood estimation in causal inference and genomics
    • Gruber S, van der Laan M. An application of collaborative targeted maximum likelihood estimation in causal inference and genomics. The International Journal of Biostatistics 2010; 6(1):1-30.
    • (2010) The International Journal of Biostatistics , vol.6 , Issue.1 , pp. 1-30
    • Gruber, S.1    van der Laan, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.