메뉴 건너뛰기




Volumn 7, Issue , 2014, Pages 405-424

Peripheral nerve conduits: Technology update

Author keywords

Natural biomaterials; Peripheral nerve injury; Synthetic biomaterials

Indexed keywords

BIOLOGICAL MATERIALS;

EID: 84914668651     PISSN: None     EISSN: 11791470     Source Type: Journal    
DOI: 10.2147/MDER.S59124     Document Type: Review
Times cited : (229)

References (150)
  • 1
    • 84856571603 scopus 로고    scopus 로고
    • A biomaterials approach to peripheral regeneration: Bridging the peripheral nerve gap and enhancing func­tional recovery
    • Daly W, Yao L, Zeugolis D, et al. A biomaterials approach to peripheral regeneration: bridging the peripheral nerve gap and enhancing func­tional recovery. J R Soc Interface. 2012;9:202–221.
    • (2012) J R Soc Interface , vol.9 , pp. 202-221
    • Daly, W.1    Yao, L.2    Zeugolis, D.3
  • 2
    • 33644820407 scopus 로고
    • Three types of nerve injury
    • Seddon H. Three types of nerve injury. Brain. 1943;66:237–288.
    • (1943) Brain , vol.66 , pp. 237-288
    • Seddon, H.1
  • 3
    • 76949121643 scopus 로고
    • A classification of peripheral nerve injuries producing loss of function
    • Sunderland S. A classification of peripheral nerve injuries producing loss of function. Brain. 1951;74:491–516.
    • (1951) Brain , vol.74 , pp. 491-516
    • Sunderland, S.1
  • 4
    • 47749121773 scopus 로고    scopus 로고
    • Evaluation and management of peripheral nerve injury
    • Campbell WW. Evaluation and management of peripheral nerve injury. Clin Neurophysıol. 2008;119:1951–1965.
    • (2008) Clin Neurophysıol , vol.119 , pp. 1951-1965
    • Campbell, W.W.1
  • 5
    • 78149420549 scopus 로고    scopus 로고
    • Repairing injured peripheral nerves: Bridging the gap
    • Deumens R, Bozkurt A, Meek MF, et al. Repairing injured peripheral nerves: bridging the gap. Prog Neurobıol. 2010;92:245–276.
    • (2010) Prog Neurobıol , vol.92 , pp. 245-276
    • Deumens, R.1    Bozkurt, A.2    Meek, M.F.3
  • 6
    • 0034048732 scopus 로고    scopus 로고
    • Techniques for nerve grafting
    • Millessi H. Techniques for nerve grafting. Hand Clin. 2000;16: 73–91.
    • (2000) Hand Clin , vol.16 , pp. 73-91
    • Millessi, H.1
  • 7
    • 84859428562 scopus 로고    scopus 로고
    • FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy
    • Kehoe S, Zhang XF, Boyd D. FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury. 2012;43:553–572.
    • (2012) Injury , vol.43 , pp. 553-572
    • Kehoe, S.1    Zhang, X.F.2    Boyd, D.3
  • 8
    • 70349783204 scopus 로고    scopus 로고
    • Chapter 8: Current, techniques and concepts in peripheral nerve repair
    • Stefano G, Pierluigi T, Bruno B, editors, San Diego, CA: Academic Press
    • Siemionow M, Brzezicki G. Chapter 8: current, techniques and concepts in peripheral nerve repair. In: Stefano G, Pierluigi T, Bruno B, editors. International Review of Neurobiology. San Diego, CA: Academic Press; 2009:141–172.
    • (2009) International Review of Neurobiology , pp. 141-172
    • Siemionow, M.1    Brzezicki, G.2
  • 9
    • 8744243387 scopus 로고    scopus 로고
    • Effects of motor versus sensory nerve grafts on peripheral nerve regeneration
    • Nichols CM, Brenner MJ, Fox IK, et al. Effects of motor versus sensory nerve grafts on peripheral nerve regeneration. Exp Neurol. 2004;190:347–355.
    • (2004) Exp Neurol , vol.190 , pp. 347-355
    • Nichols, C.M.1    Brenner, M.J.2    Fox, I.K.3
  • 10
    • 43049154887 scopus 로고    scopus 로고
    • Nerve Allograft transplantation: A review
    • Siemionow M, Sonmez E. Nerve Allograft transplantation: a review. J Reconstr Microsurg. 2007;23(8):511–520.
    • (2007) J Reconstr Microsurg , vol.23 , Issue.8 , pp. 511-520
    • Siemionow, M.1    Sonmez, E.2
  • 11
    • 0030879059 scopus 로고    scopus 로고
    • Nerve xenograft transplantation: Immunosuppression with FK-506 and RS-61443
    • Hebebrand D, Zohman G, Jones NF. Nerve xenograft transplantation: immunosuppression with FK-506 and RS-61443. Biomaterials. 1997;22(3):304–307.
    • (1997) Biomaterials , vol.22 , Issue.3 , pp. 304-307
    • Hebebrand, D.1    Zohman, G.2    Jones, N.F.3
  • 12
    • 84855256132 scopus 로고    scopus 로고
    • Sciatic nerve repair by acellular nerve xenografts ımplanted with BMSCs in rats xenograft combined with BMSCs
    • Jia HJ, Wang Y, Tong XJ, et al. Sciatic nerve repair by acellular nerve xenografts ımplanted with BMSCs in rats xenograft combined with BMSCs. Synapse. 2012;66:256–269.
    • (2012) Synapse , vol.66 , pp. 256-269
    • Jia, H.J.1    Wang, Y.2    Tong, X.J.3
  • 15
    • 9344249551 scopus 로고    scopus 로고
    • Engineering an improved acel­lular nerve graft via optimized chemical processing
    • Hudson TW, Liu SY, Schmidt CE. Engineering an improved acel­lular nerve graft via optimized chemical processing. Tissue Eng. 2004;10:1346–1358.
    • (2004) Tissue Eng , vol.10 , pp. 1346-1358
    • Hudson, T.W.1    Liu, S.Y.2    Schmidt, C.E.3
  • 16
    • 33645876484 scopus 로고    scopus 로고
    • Badylak SF. Decellularization of tissues and organs.
    • Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27(19):3675–3683.
    • (2006) Biomaterials , vol.27 , Issue.19 , pp. 3675-3683
    • Gilbert, T.W.1    Sellaro, T.L.2
  • 17
    • 0023851451 scopus 로고
    • Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve
    • Gulati AK. Evaluation of acellular and cellular nerve grafts in repair of rat peripheral nerve. J Neurosurg. 1988;68:117–123.
    • (1988) J Neurosurg , vol.68 , pp. 117-123
    • Gulati, A.K.1
  • 18
    • 0345868870 scopus 로고    scopus 로고
    • Biaxial strength of multilaminated extracellular matrix scaffolds
    • Freytes DO, Badylak SF, Webster TJ, et al. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials. 2004;25:2353–2361.
    • (2004) Biomaterials , vol.25 , pp. 2353-2361
    • Freytes, D.O.1    Badylak, S.F.2    Webster, T.J.3
  • 19
    • 4544232274 scopus 로고    scopus 로고
    • Assessing porcine liver-derived biomatrix for hepatic tissue engineering
    • Lin P, Chan WC, Badylak SF, et al. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng. 2004;10:1046–1053.
    • (2004) Tissue Eng , vol.10 , pp. 1046-1053
    • Lin, P.1    Chan, W.C.2    Badylak, S.F.3
  • 20
    • 0032007015 scopus 로고    scopus 로고
    • Bladder augmentation using allogenic bladder submucosa seeded with cells
    • Yoo JJ, Meng J, Oberpenning F, et al. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998;51:221–225.
    • (1998) Urology , vol.51 , pp. 221-225
    • Yoo, J.J.1    Meng, J.2    Oberpenning, F.3
  • 21
    • 0036783930 scopus 로고    scopus 로고
    • Urethral replacement using cell seeded tubularized collagen matrices
    • De Filippo RE, Yoo JJ, Atala A. Urethral replacement using cell seeded tubularized collagen matrices. J Urol. 2002;168:1789–1792.
    • (2002) J Urol , vol.168 , pp. 1789-1792
    • De Filippo, R.E.1    Yoo, J.J.2    Atala, A.3
  • 22
    • 0141564848 scopus 로고    scopus 로고
    • Decellularized native and engineered arterial scaffolds for transplantation
    • Dahl SL, Koh J, Prabhakar V, et al. Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant. 2003;12:659–666.
    • (2003) Cell Transplant , vol.12 , pp. 659-666
    • Dahl, S.L.1    Koh, J.2    Prabhakar, V.3
  • 23
    • 0742272488 scopus 로고    scopus 로고
    • Process development of an acel­lular dermal matrix (ADM) for biomedical applications
    • Chen RN, Ho HO, Tsai YT, et al. Process development of an acel­lular dermal matrix (ADM) for biomedical applications. Biomaterials. 2004;25(13):2679–2686.
    • (2004) Biomaterials , vol.25 , Issue.13 , pp. 2679-2686
    • Chen, R.N.1    Ho, H.O.2    Tsai, Y.T.3
  • 24
    • 23644440674 scopus 로고    scopus 로고
    • Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft
    • Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials. 2005;26:7339–7349.
    • (2005) Biomaterials , vol.26 , pp. 7339-7349
    • Woods, T.1    Gratzer, P.F.2
  • 25
    • 0031037094 scopus 로고    scopus 로고
    • Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms
    • Vyavahare N, Hirsch D, Lerner E, et al. Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms. Circulation. 1997;95:479–488.
    • (1997) Circulation , vol.95 , pp. 479-488
    • Vyavahare, N.1    Hirsch, D.2    Lerner, E.3
  • 26
    • 0033945882 scopus 로고    scopus 로고
    • Preparation and characteriza­tion of collagen–elastin matrices from blood vessels intended as small diameter vascular grafts
    • Goissis G, Suzigan S, Parreira DR, et al. Preparation and characteriza­tion of collagen–elastin matrices from blood vessels intended as small diameter vascular grafts. Artif Organs. 2000;24:217–223.
    • (2000) Artif Organs , vol.24 , pp. 217-223
    • Goissis, G.1    Suzigan, S.2    Parreira, D.R.3
  • 27
    • 0028454978 scopus 로고
    • Development of a pericar­dial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction
    • Courtman DW, Pereira CA, Kashef V, et al. Development of a pericar­dial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res. 1994;28:655–666.
    • (1994) J Biomed Mater Res , vol.28 , pp. 655-666
    • Courtman, D.W.1    Pereira, C.A.2    Kashef, V.3
  • 28
    • 0842282925 scopus 로고    scopus 로고
    • Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells
    • Rieder E, Kasimir MT, Silberhumer G, et al. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg. 2004;127:399–405.
    • (2004) J Thorac Cardiovasc Surg , vol.127 , pp. 399-405
    • Rieder, E.1    Kasimir, M.T.2    Silberhumer, G.3
  • 29
    • 0036730752 scopus 로고    scopus 로고
    • Experimental abdomi­nal wall defect repaired with acellular matrix
    • Gamba PG, Conconi MT, Lo Piccolo R, et al. Experimental abdomi­nal wall defect repaired with acellular matrix. Pediatr Surg Int. 2002;18:327–331.
    • (2002) Pediatr Surg Int , vol.18 , pp. 327-331
    • Gamba, P.G.1    Conconi, M.T.2    Lo Piccolo, R.3
  • 30
    • 14244251595 scopus 로고    scopus 로고
    • Prevention of calcification of bioprosthetic heart valve cusp and aortic wall with ethanol and alu­minium chloride
    • Clark JN, Ogle MF, Ashworth P, et al. Prevention of calcification of bioprosthetic heart valve cusp and aortic wall with ethanol and alu­minium chloride. Ann Thorac Surg. 2005;79(3):897–904.
    • (2005) Ann Thorac Surg , vol.79 , Issue.3 , pp. 897-904
    • Clark, J.N.1    Ogle, M.F.2    Ashworth, P.3
  • 31
    • 0036032064 scopus 로고    scopus 로고
    • Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells
    • Frerichs O, Fansa H, Schicht C, Wolf G, Schneider W, Keilhoff G. Reconstruction of peripheral nerves using acellular nerve grafts with implanted cultured Schwann cells. Microsurgery. 2002;22(7):311–315.
    • (2002) Microsurgery , vol.22 , Issue.7 , pp. 311-315
    • Frerichs, O.1    Fansa, H.2    Schicht, C.3    Wolf, G.4    Schneider, W.5    Keilhoff, G.6
  • 32
    • 0036896962 scopus 로고    scopus 로고
    • Metalloproteinase-dependent predegeneration in vitro enhances axonal regen­eration within acellular peripheral nerve grafts
    • Krekoski CA, Neubauer D, Graham JB, et al. Metalloproteinase-dependent predegeneration in vitro enhances axonal regen­eration within acellular peripheral nerve grafts. J Neurosci. 2002;22(23):10408–10415.
    • (2002) J Neurosci , vol.22 , Issue.23 , pp. 10408-10415
    • Krekoski, C.A.1    Neubauer, D.2    Graham, J.B.3
  • 33
    • 1942485782 scopus 로고    scopus 로고
    • Peripheral nerve regeneration using acellular nerve grafts
    • Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res A. 2004;68(2):201–209.
    • (2004) J Biomed Mater Res A , vol.68 , Issue.2 , pp. 201-209
    • Kim, B.S.1    Yoo, J.J.2    Atala, A.3
  • 34
    • 34548234898 scopus 로고    scopus 로고
    • Chondroitinase treatment increases the effective length of acellular nerve grafts
    • Neubauer D, Graham JB, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts. Exp Neurol. 2007;207:163–170.
    • (2007) Exp Neurol , vol.207 , pp. 163-170
    • Neubauer, D.1    Graham, J.B.2    Muir, D.3
  • 35
    • 67049116118 scopus 로고    scopus 로고
    • Processed allografts and type I collagen conduits for repair of peripheral nerve gaps
    • Whitlock EL, Tuffaha SH, Luciano JP, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve. 2009;39:787–799.
    • (2009) Muscle Nerve , vol.39 , pp. 787-799
    • Whitlock, E.L.1    Tuffaha, S.H.2    Luciano, J.P.3
  • 36
    • 80052387048 scopus 로고    scopus 로고
    • Combined use of decellularized allo­geneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats
    • Sun F, Zhou K, Mi WJ, et al. Combined use of decellularized allo­geneic artery conduits with autologous transdifferentiated adipose-derived stem cells for facial nerve regeneration in rats. Biomaterials. 2011;32(32):8118–8128.
    • (2011) Biomaterials , vol.32 , Issue.32 , pp. 8118-8128
    • Sun, F.1    Zhou, K.2    Mi, W.J.3
  • 37
    • 84892586992 scopus 로고    scopus 로고
    • Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin
    • Zhao Z, Wnag Y, Peng J, et al. Improvement in nerve regeneration through a decellularized nerve graft by supplementation with bone marrow stromal cells in fibrin. Cell Transplant. 2014;23(1):97–110.
    • (2014) Cell Transplant , vol.23 , Issue.1 , pp. 97-110
    • Zhao, Z.1    Wnag, Y.2    Peng, J.3
  • 38
    • 2942602323 scopus 로고
    • Ueber Transplantation, Regeneration und entzündliche Neubildung
    • Gluck T. Ueber Transplantation, Regeneration und entzündliche Neubildung. Klin Wochenschr. 1881;18:554–557.
    • (1881) Klin Wochenschr , vol.18 , pp. 554-557
    • Gluck, T.1
  • 39
    • 0034193047 scopus 로고    scopus 로고
    • A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance
    • Lundborg G. A 25-year perspective of peripheral nerve surgery: evolving neuroscientific concepts and clinical significance. J Hand Surg. 2000;25:391–414.
    • (2000) J Hand Surg , vol.25 , pp. 391-414
    • Lundborg, G.1
  • 40
    • 4744371904 scopus 로고    scopus 로고
    • Preparation and physico-chemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole
    • Verreck G, Chun I, Li Y, et al. Preparation and physico-chemical characterization of biodegradable nerve guides containing the nerve growth agent sabeluzole. Biomaterials. 2005;26:1307–1315.
    • (2005) Biomaterials , vol.26 , pp. 1307-1315
    • Verreck, G.1    Chun, I.2    Li, Y.3
  • 41
    • 0028291881 scopus 로고
    • Biodegradable polymer scaffolds for tissue engineering
    • Freed LE, Vunjak-Novakovic G, Biron RJ, et al. Biodegradable polymer scaffolds for tissue engineering. Nat Biotechnol. 1994;12: 689–693.
    • (1994) Nat Biotechnol , vol.12 , pp. 689-693
    • Freed, L.E.1    Vunjak-Novakovic, G.2    Biron, R.J.3
  • 42
    • 0642366759 scopus 로고    scopus 로고
    • Neural tissue engineering: Strategies for repair and regeneration
    • Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.
    • (2003) Annu Rev Biomed Eng , vol.5 , pp. 293-347
    • Schmidt, C.E.1    Leach, J.B.2
  • 43
    • 0026727039 scopus 로고
    • Industrial production of poly-3-hydroxybutyrate
    • Hrabak O. Industrial production of poly-3-hydroxybutyrate. FEMS Microbiol Rev. 1992;103:251–256.
    • (1992) FEMS Microbiol Rev , vol.103 , pp. 251-256
    • Hrabak, O.1
  • 44
    • 0032967705 scopus 로고    scopus 로고
    • PHA applications: Addressing the price performance issue: I. Tissue engineering
    • Williams SF, Martin DP, Horowitz DM, Peoples OP. PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol. 1999;25:111–121.
    • (1999) Int J Biol Macromol , vol.25 , pp. 111-121
    • Williams, S.F.1    Martin, D.P.2    Horowitz, D.M.3    Peoples, O.P.4
  • 45
    • 0033153240 scopus 로고    scopus 로고
    • A new resorb­able wrap-around implant as an alternative nerve repair technique
    • Hazari A, Johansson-Rudén G, Junemo-Bostrom K, et al. A new resorb­able wrap-around implant as an alternative nerve repair technique. J Hand Surg Br. 1999;24:291–295.
    • (1999) J Hand Surg Br , vol.24 , pp. 291-295
    • Hazari, A.1    Johansson-Rudén, G.2    Junemo-Bostrom, K.3
  • 46
    • 72049096634 scopus 로고    scopus 로고
    • Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: A prospective, assessor-blinded, randomised clinical study of sensory, motor and func­tional recovery after peripheral nerve repair
    • Aberg M, Ljungberg C, Edin E, et al. Clinical evaluation of a resorbable wrap-around implant as an alternative to nerve repair: a prospective, assessor-blinded, randomised clinical study of sensory, motor and func­tional recovery after peripheral nerve repair. J Plast Reconstr Aesthet Surg. 2009;62:1503–1509.
    • (2009) J Plast Reconstr Aesthet Surg , vol.62 , pp. 1503-1509
    • Aberg, M.1    Ljungberg, C.2    Edin, E.3
  • 47
    • 84914668351 scopus 로고    scopus 로고
    • The interface between peripheral axons, Schwann cells and biosynthetic nerve guides
    • Aldskogius H, Fraher J, editors, Amsterdam: IOS Press
    • Terenghi G, Mosahebi A. The interface between peripheral axons, Schwann cells and biosynthetic nerve guides. In: Aldskogius H, Fraher J, editors. Glial Interfaces in the Nervous System: Role in Repair and Plasticity. Amsterdam: IOS Press; 2002:13–20.
    • (2002) Glial Interfaces in the Nervous System: Role in Repair and Plasticity , pp. 13-20
    • Terenghi, G.1    Mosahebi, A.2
  • 48
    • 36849035824 scopus 로고    scopus 로고
    • ECM molecules medi­ate both Schwann cell proliferation and activation to enhance neurite outgrowth.
    • Armstrong SJ, Wiberg M, Terenghi G, et al. ECM molecules medi­ate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng. 2007;13(12):2863–2870.
    • (2007) Tissue Eng , vol.13 , Issue.12 , pp. 2863-2870
    • Armstrong, S.J.1    Wiberg, M.2    Terenghi, G.3
  • 49
    • 0345530796 scopus 로고    scopus 로고
    • A composite poly-hydroxybutyrate–glial growth factor conduit for long nerve gap repairs
    • Mohanna PN, Young RC, Wiberg M, et al. A composite poly-hydroxybutyrate–glial growth factor conduit for long nerve gap repairs. J Anat. 2003;203:553–565.
    • (2003) J Anat , vol.203 , pp. 553-565
    • Mohanna, P.N.1    Young, R.C.2    Wiberg, M.3
  • 50
    • 78650415241 scopus 로고    scopus 로고
    • Regeneration poten­tial and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits
    • Erba P, Mantovani C, Kalbermatten DF, et al. Regeneration poten­tial and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits. J Plast Reconstr Aes. 2010;63(12):e811–e817.
    • (2010) J Plast Reconstr Aes , vol.63 , Issue.12
    • Erba, P.1    Mantovani, C.2    Kalbermatten, D.F.3
  • 51
    • 84874514440 scopus 로고    scopus 로고
    • Fabrication, char­acterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering
    • Masaeli E, Morshed M, Nasr-Esfahani MH, et al. Fabrication, char­acterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PloS One. 2013;8(2):e57157.
    • (2013) Plos One , vol.8 , Issue.2
    • Masaeli, E.1    Morshed, M.2    Nasr-Esfahani, M.H.3
  • 52
    • 84875960622 scopus 로고    scopus 로고
    • A nanofibrous phbv tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge
    • Biazar E, Heidari KH. A nanofibrous phbv tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge. Cell Commun Adhes. 2013;20(1–2): 41–49.
    • (2013) Cell Commun Adhes , vol.20 , Issue.1-2 , pp. 41-49
    • Biazar, E.1    Heidari, K.H.2
  • 53
    • 84887229280 scopus 로고    scopus 로고
    • Chitosan–cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge
    • Biazar E, Keshel SH. Chitosan–cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge. ASAIO J. 2013;56(6):651–659.
    • (2013) ASAIO J , vol.56 , Issue.6 , pp. 651-659
    • Biazar, E.1    Keshel, S.H.2
  • 54
    • 84896407136 scopus 로고    scopus 로고
    • Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering
    • Prabhakaran MP, Atankhan E, Ramakrishna S. Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng. 2013;110(10):2775–2784.
    • (2013) Biotechnol Bioeng , vol.110 , Issue.10 , pp. 2775-2784
    • Prabhakaran, M.P.1    Atankhan, E.2    Ramakrishna, S.3
  • 57
    • 34447095902 scopus 로고    scopus 로고
    • Cell responses to biomimetic protein scaffolds used in tissue repair and engineering
    • Brown RA, Phillips JB. Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. Int Rev Cytol. 2007;262:75–150.
    • (2007) Int Rev Cytol , vol.262 , pp. 75-150
    • Brown, R.A.1    Phillips, J.B.2
  • 58
    • 27744481178 scopus 로고    scopus 로고
    • Ultrarapid engineering of biomimetic materials and tissues: Fabrication of nano- and microstructures by plastic compression
    • Brown RA, Wiseman M, Chuo C-B, Cheema U, Nazhat SN. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression. Adv Funct Mater. 2005;15:1762–1770.
    • (2005) Adv Funct Mater , vol.15 , pp. 1762-1770
    • Brown, R.A.1    Wiseman, M.2    Chuo, C.-B.3    Cheema, U.4    Nazhat, S.N.5
  • 59
    • 0025729567 scopus 로고
    • A collagen-based nerve guide conduit for peripheral nerve repair: An electrophysiological study of nerve regeneration in rodents and nonhuman primates
    • Archibald S, Krarup C, Shefner J, et al. A collagen-based nerve guide conduit for peripheral nerve repair: an electrophysiological study of nerve regeneration in rodents and nonhuman primates. J Comp Neurol. 1991;306:685–696.
    • (1991) J Comp Neurol , vol.306 , pp. 685-696
    • Archibald, S.1    Krarup, C.2    Shefner, J.3
  • 60
    • 0021815539 scopus 로고
    • Peripheral-nerve injection injury with purified bovine collagen – an experimental-model in the rat
    • Mackinnon SE, Hudson AR, Bojanowski V, Hunter DA, Maraghi E. Peripheral-nerve injection injury with purified bovine collagen – an experimental-model in the rat. Ann Plast Surg. 1985;14:428–436.
    • (1985) Ann Plast Surg , vol.14 , pp. 428-436
    • Mackinnon, S.E.1    Hudson, A.R.2    Bojanowski, V.3    Hunter, D.A.4    Maraghi, E.5
  • 61
    • 46449113087 scopus 로고    scopus 로고
    • US Food and Drug Administration/Conformit Europe–approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves
    • Meek MF, Coert JH. US Food and Drug Administration/Conformit Europe–approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann Plast Surg. 2008;60:466–472.
    • (2008) Ann Plast Surg , vol.60 , pp. 466-472
    • Meek, M.F.1    Coert, J.H.2
  • 62
    • 54049155832 scopus 로고    scopus 로고
    • Use of the Neuro-Wrap sys­tem for severe post-electroconvulsive therapy headaches
    • Kramer BA, Kader AG, Klark RN. Use of the Neuro-Wrap sys­tem for severe post-electroconvulsive therapy headaches. J ECT. 2008;24(2):152–155.
    • (2008) J ECT , vol.24 , Issue.2 , pp. 152-155
    • Kramer, B.A.1    Kader, A.G.2    Klark, R.N.3
  • 65
    • 58149380325 scopus 로고    scopus 로고
    • The clinical use of artificial nerve conduits for digital nerve repair: A prospective cohort study and literature review
    • Lohmeyer JA, Siemers F, Machens HG, et al. The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Mıcrosurg. 2009;25:55–61.
    • (2009) J Reconstr Mıcrosurg , vol.25 , pp. 55-61
    • Lohmeyer, J.A.1    Siemers, F.2    Machens, H.G.3
  • 66
    • 77950339344 scopus 로고    scopus 로고
    • Collagen nerve conduits releas­ing the neurotrophic factors GDNF and NGF
    • Madduri S, Feldman K, Tervoort T. Collagen nerve conduits releas­ing the neurotrophic factors GDNF and NGF. J Controlled Release. 2010;143:168–174.
    • (2010) J Controlled Release , vol.143 , pp. 168-174
    • Madduri, S.1    Feldman, K.2    Tervoort, T.3
  • 67
    • 84879111249 scopus 로고    scopus 로고
    • Preparation and biological evaluation of chitosan–collagen–icariin composite scaffolds for neuronal regeneration
    • Yang CR, Chen JD. Preparation and biological evaluation of chitosan–collagen–icariin composite scaffolds for neuronal regeneration. Neurol Sci. 2013;34:941–947.
    • (2013) Neurol Sci , vol.34 , pp. 941-947
    • Yang, C.R.1    Chen, J.D.2
  • 68
    • 84911808472 scopus 로고    scopus 로고
    • Crosslinking of micropatterned collagen based nerve guides to modulate the expected half life
    • Epub February 14
    • Salvatore L, Madaghiele M, Parisi C, Gatti F, Sannino A. Crosslinking of micropatterned collagen based nerve guides to modulate the expected half life. J Biomed Mater Res A. Epub February 14, 2014.
    • (2014) Biomed Mater Res A
    • Salvatore, L.1    Madaghiele, M.2    Parisi, C.3    Gatti, F.4    Sannino, A.5
  • 69
    • 3342901986 scopus 로고    scopus 로고
    • A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration
    • Liu BS, Yao CH, Hsu SH, et al. A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J Biomater Appl. 2004;19:21–34.
    • (2004) J Biomater Appl , vol.19 , pp. 21-34
    • Liu, B.S.1    Yao, C.H.2    Hsu, S.H.3
  • 70
    • 0033824059 scopus 로고    scopus 로고
    • Biocompatibility and performance in vitro of a hemostatic gelatin sponge
    • Cenni E, Ciapetti G, Stea S, et al. Biocompatibility and performance in vitro of a hemostatic gelatin sponge. J Biomater Sci Polym Ed. 2000;11:685–699.
    • (2000) J Biomater Sci Polym Ed , vol.11 , pp. 685-699
    • Cenni, E.1    Ciapetti, G.2    Stea, S.3
  • 71
    • 9344237120 scopus 로고    scopus 로고
    • Matsuda. Photofabricated gelatin-based nerve conduits: Nerve tissue regeneration potential
    • Gamez E, Goto Y, Nagata K, Iwaki T, Sasaki T, Matsuda. Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potential. Cell Transplant. 2004;13(5):549–564.
    • (2004) Cell Transplant , vol.13 , Issue.5 , pp. 549-564
    • Gamez, E.1    Goto, Y.2    Nagata, K.3    Iwaki, T.4    Sasaki, T.5
  • 72
    • 11144320363 scopus 로고    scopus 로고
    • An in vivo evaluation of a biode­gradable genipin-cross-linked gelatin peripheral nerve guide conduit material
    • Chen YS, Chang JY, Chen CY, et al. An in vivo evaluation of a biode­gradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials. 2005;26:3911–3918.
    • (2005) Biomaterials , vol.26 , pp. 3911-3918
    • Chen, Y.S.1    Chang, J.Y.2    Chen, C.Y.3
  • 73
    • 56749133295 scopus 로고    scopus 로고
    • Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair
    • Liu BS. Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair. J Biomed Mater Res A. 2008;87(4):1092–1102.
    • (2008) J Biomed Mater Res A , vol.87 , Issue.4 , pp. 1092-1102
    • Liu, B.S.1
  • 74
    • 84891629374 scopus 로고    scopus 로고
    • Axonal regeneration and remyelination evaluation of chitosan/gelatin based nerve guide combined with transforming growth factor-β1 and Schwann cells
    • Nie X, Deng M, Yang M, Liu L, Zhang Y, Wen X. Axonal regeneration and remyelination evaluation of chitosan/gelatin based nerve guide combined with transforming growth factor-β1 and Schwann cells. Cell Biochen Biophys. 2014;68:163–172.
    • (2014) Cell Biochen Biophys , vol.68 , pp. 163-172
    • Nie, X.1    Deng, M.2    Yang, M.3    Liu, L.4    Zhang, Y.5    Wen, X.6
  • 75
    • 0028837589 scopus 로고
    • Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats
    • Whitworth IH, Terenghi G, Green CJ, et al. Targeted delivery of nerve growth factor via fibronectin conduits assists nerve regeneration in control and diabetic rats. Eur J Neurosci. 1995;7:2220–2225.
    • (1995) Eur J Neurosci , vol.7 , pp. 2220-2225
    • Whitworth, I.H.1    Terenghi, G.2    Green, C.J.3
  • 76
    • 0029845967 scopus 로고    scopus 로고
    • Nerve growth factor enhances nerve regeneration through fibronectin grafts
    • Whitworth IH, Brown RA, Dore CJ, et al. Nerve growth factor enhances nerve regeneration through fibronectin grafts. J Hand Surg. 1996;21B:514–522.
    • (1996) J Hand Surg , vol.21B , pp. 514-522
    • Whitworth, I.H.1    Brown, R.A.2    Dore, C.J.3
  • 77
    • 0032948813 scopus 로고    scopus 로고
    • Adhesion, alignment and migration of cultured Schwann cells on ulrathin fibronectin fibres
    • Ahmed Z, Brown RA. Adhesion, alignment and migration of cultured Schwann cells on ulrathin fibronectin fibres. Cell Motıl Cytoskel. 1999;42:331–343.
    • (1999) Cell Motıl Cytoskel , vol.42 , pp. 331-343
    • Ahmed, Z.1    Brown, R.A.2
  • 79
    • 0037901858 scopus 로고    scopus 로고
    • Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits
    • Mosahebi A, Wiberg M, Terenghi G. Addition of fibronectin to alginate matrix improves peripheral nerve regeneration in tissue-engineered conduits. Tissue Eng. 2009;9(2):209–218.
    • (2009) Tissue Eng , vol.9 , Issue.2 , pp. 209-218
    • Mosahebi, A.1    Wiberg, M.2    Terenghi, G.3
  • 80
    • 79960239996 scopus 로고    scopus 로고
    • Rapid repair of rat sciatic nerve injury using a nanosilver-embedded col­lagen scaffold coated with laminin and fibronectin.
    • Ding T, Lu WW, Zheng Y, Li Zy, Pan HB, Luo Z. Rapid repair of rat sciatic nerve injury using a nanosilver-embedded col­lagen scaffold coated with laminin and fibronectin. Regen Med. 2011;6(4):437–447.
    • (2011) Regen Med , vol.6 , Issue.4 , pp. 437-447
    • Ding, T.1    Lu, W.W.2    Zheng, Y.3    Li, Z.4    Pan, H.B.5    Luo, Z.6
  • 82
    • 0345118157 scopus 로고    scopus 로고
    • Mapping domain structures in silks from insects and spiders related to protein assembly
    • Bini E, Knight DP, Kaplan DL. Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol. 2004;335(1):27–40.
    • (2004) J Mol Biol , vol.335 , Issue.1 , pp. 27-40
    • Bini, E.1    Knight, D.P.2    Kaplan, D.L.3
  • 83
    • 33846133217 scopus 로고    scopus 로고
    • Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro
    • Yang Y, Chen X, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials. 2007;28:1643–1652.
    • (2007) Biomaterials , vol.28 , pp. 1643-1652
    • Yang, Y.1    Chen, X.2    Ding, F.3
  • 84
    • 82855161296 scopus 로고    scopus 로고
    • Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats
    • Huang W, Begum R, Barber T, et al. Regenerative potential of silk conduits in repair of peripheral nerve injury in adult rats. Biomaterials. 2012;33:59–71.
    • (2012) Biomaterials , vol.33 , pp. 59-71
    • Huang, W.1    Begum, R.2    Barber, T.3
  • 85
    • 84891373582 scopus 로고    scopus 로고
    • Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps
    • Gu Y, Zhu J, Xue C, et al. Chitosan/silk fibroin-based, Schwann cell-derived extracellular matrix-modified scaffolds for bridging rat sciatic nerve gaps. Biomaterials. 2014;35(7):2253–2263.
    • (2014) Biomaterials , vol.35 , Issue.7 , pp. 2253-2263
    • Gu, Y.1    Zhu, J.2    Xue, C.3
  • 86
    • 84896541762 scopus 로고    scopus 로고
    • Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applicayions
    • Schacht K, Scheibel T. Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applicayions. Curr Opin Biotech. 2014;29C:62–69.
    • (2014) Curr Opin Biotech , vol.29C , pp. 62-69
    • Schacht, K.1    Scheibel, T.2
  • 87
    • 0013820291 scopus 로고
    • The chemistry of keratins
    • Anfinsen CB Jr, Anson ML, Edsall JT, Richards FM, editors, New York: Academic Press
    • Crewther WG, Fraser RDB, Lennox FG, Lindley H. The chemistry of keratins. In: Anfinsen CB Jr, Anson ML, Edsall JT, Richards FM, editors. Advances in Protein Chemistry. New York: Academic Press; 1965:191–346.
    • (1965) Advances in Protein Chemistry , pp. 191-346
    • Crewther, W.G.1    Fraser, R.2    Lennox, F.G.3    Lindley, H.4
  • 88
    • 84555196712 scopus 로고    scopus 로고
    • Keratin gel filler for peripheral nerve repair in a rodent sciatic nerve injury model
    • Lin YC, Ramadan M, Van Dyke M, et al. Keratin gel filler for peripheral nerve repair in a rodent sciatic nerve injury model. Plast Reconstr Surg. 2012;129(1):67–78.
    • (2012) Plast Reconstr Surg , vol.129 , Issue.1 , pp. 67-78
    • Lin, Y.C.1    Ramadan, M.2    Van Dyke, M.3
  • 89
    • 84894108818 scopus 로고    scopus 로고
    • A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: An electrophysiological and histological study
    • Pace LA, Plate JF, Mannava S, et al. A human hair keratin hydrogel scaffold enhances median nerve regeneration in nonhuman primates: an electrophysiological and histological study. Tissue Eng Part A. 2014;20(3–4):507–517.
    • (2014) Tissue Eng Part A , vol.20 , Issue.3-4 , pp. 507-517
    • Pace, L.A.1    Plate, J.F.2    Mannava, S.3
  • 90
    • 35348929350 scopus 로고    scopus 로고
    • The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves
    • Sierpinski P, Garrett J, Ma J, et al. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials. 2008;29(1):118–128.
    • (2008) Biomaterials , vol.29 , Issue.1 , pp. 118-128
    • Sierpinski, P.1    Garrett, J.2    Ma, J.3
  • 92
    • 33746563612 scopus 로고    scopus 로고
    • Polymer blends and composites from renewable resources
    • Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.
    • (2006) Prog Polym Sci , vol.31 , pp. 576-602
    • Yu, L.1    Dean, K.2    Li, L.3
  • 93
    • 0037409924 scopus 로고    scopus 로고
    • Implantable applications of chitin and chitosan
    • Eugene K, Lee YL. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–2349.
    • (2003) Biomaterials , vol.24 , pp. 2339-2349
    • Eugene, K.1    Lee, Y.L.2
  • 94
    • 77954541106 scopus 로고    scopus 로고
    • Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration
    • Zheng L, Cui HF. Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration. J Mater Sci Mater Med. 2010;21(5);1713–1720.
    • (2010) J Mater Sci Mater Med , vol.21 , Issue.5 , pp. 1713-1720
    • Zheng, L.1    Cui, H.F.2
  • 95
    • 84885374434 scopus 로고    scopus 로고
    • Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects
    • Haastert-Talini K, Geuna S, Dahlin LB, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013;34(38):9886–9904.
    • (2013) Biomaterials , vol.34 , Issue.38 , pp. 9886-9904
    • Haastert-Talini, K.1    Geuna, S.2    Dahlin, L.B.3
  • 97
    • 84879887343 scopus 로고    scopus 로고
    • New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy.
    • Hsu SH, Kuo WC, Chen YT, et al. New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater. 2013;9(5):6606–6615.
    • (2013) Acta Biomater , vol.9 , Issue.5 , pp. 6606-6615
    • Hsu, S.H.1    Kuo, W.C.2    Chen, Y.T.3
  • 98
    • 79953067209 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogels for biomedical applications
    • Burdick AJ, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–H56.
    • (2011) Adv Mater , vol.23 , Issue.12
    • Burdick, A.J.1    Prestwich, G.D.2
  • 99
    • 77953839511 scopus 로고    scopus 로고
    • Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering
    • Suri S, Schmidt CR. Cell-laden hydrogel constructs of hyaluronic acid, collagen, and laminin for neural tissue engineering. Tissue Eng Part A. 2010;16(5):1707–1713.
    • (2010) Tissue Eng Part A , vol.16 , Issue.5 , pp. 1707-1713
    • Suri, S.1    Schmidt, C.R.2
  • 100
    • 84877946135 scopus 로고    scopus 로고
    • Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering
    • Guan S, Zhang XL, Lin XM, Liu TQ, Ma XH, Cui ZF. Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering. J Biomater Sci Polym Ed. 2013;24(8):999–1014.
    • (2013) J Biomater Sci Polym Ed , vol.24 , Issue.8 , pp. 999-1014
    • Guan, S.1    Zhang, X.L.2    Lin, X.M.3    Liu, T.Q.4    Ma, X.H.5    Cui, Z.F.6
  • 101
    • 84867888184 scopus 로고    scopus 로고
    • Macroporous nanowire nanoelectronic scaffolds for synthetic tissues
    • Tian B, Liu J, Dvir T, et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater. 2012;11:986–994.
    • (2012) Nat Mater , vol.11 , pp. 986-994
    • Tian, B.1    Liu, J.2    Dvir, T.3
  • 102
    • 63949086856 scopus 로고    scopus 로고
    • Evaluation of a multi-layer micro­braided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration
    • Lu MC, Huang YT, Lin JH, et al. Evaluation of a multi-layer micro­braided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J Mater Sci Mater Med. 2009;20:1175–1180.
    • (2009) J Mater Sci Mater Med , vol.20 , pp. 1175-1180
    • Lu, M.C.1    Huang, Y.T.2    Lin, J.H.3
  • 103
    • 79952744258 scopus 로고    scopus 로고
    • Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model
    • Hsu SH, Chan SH, Chiang CM, et al. Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials. 2011;32:3764–3775.
    • (2011) Biomaterials , vol.32 , pp. 3764-3775
    • Hsu, S.H.1    Chan, S.H.2    Chiang, C.M.3
  • 104
    • 84914697645 scopus 로고    scopus 로고
    • A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats
    • Matsumine H, Sasaki R, Yamato M, Okano T, Sakurai H. A polylactic acid non-woven nerve conduit for facial nerve regeneration in rats. J Tissue Eng Regen Med. 2014;8(6):454–462.
    • (2014) J Tissue Eng Regen Med , vol.8 , Issue.6 , pp. 454-462
    • Matsumine, H.1    Sasaki, R.2    Yamato, M.3    Okano, T.4    Sakurai, H.5
  • 105
    • 84883067464 scopus 로고    scopus 로고
    • Fabrication of bioac­tive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap
    • Ni HC, Tseng TC, Chen JR, Hsu SH, Chiu IM. Fabrication of bioac­tive conduits containing the fibroblast growth factor 1 and neural stem cells for peripheral nerve regeneration across a 15 mm critical gap. Biofabrication. 2013;5:035010.
    • (2013) Biofabrication , vol.5
    • Ni, H.C.1    Tseng, T.C.2    Chen, J.R.3    Hsu, S.H.4    Chiu, I.M.5
  • 106
    • 0033151372 scopus 로고    scopus 로고
    • In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration
    • Evans GRD, Brandt K, Widmer MS, et al. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials. 1999;20:1109–1115.
    • (1999) Biomaterials , vol.20 , pp. 1109-1115
    • Evans, G.1    Brandt, K.2    Widmer, M.S.3
  • 107
    • 10344252737 scopus 로고    scopus 로고
    • Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration
    • Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng. 2004;1:151–157.
    • (2004) J Neural Eng , vol.1 , pp. 151-157
    • Rutkowski, G.E.1    Miller, C.A.2    Jeftinija, S.3    Mallapragada, S.K.4
  • 108
    • 53549128398 scopus 로고    scopus 로고
    • Enhanced neurite alignment on micro-patterned poly-L-lactic acid films
    • Li J, McNally H, Shi R. Enhanced neurite alignment on micro-patterned poly-L-lactic acid films. J Biomed Mater Res Part A. 2008; 87:392–404.
    • (2008) J Biomed Mater Res Part A , vol.87 , pp. 392-404
    • Li, J.1    McNally, H.2    Shi, R.3
  • 109
    • 78649561274 scopus 로고    scopus 로고
    • Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning
    • Liu JJ, Wang CY, Wang JG, et al. Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J Biomed Mater Res Part A. 2011;96:1–20.
    • (2011) J Biomed Mater Res Part A , vol.96 , pp. 1-20
    • Liu, J.J.1    Wang, C.Y.2    Wang, J.G.3
  • 110
    • 84887019427 scopus 로고    scopus 로고
    • Conductive PPY/PDLLA conduit for peripheral nerve regeneration
    • Xu H, Holzwarth JM, Yan Y, et al. Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials. 2014;35:225–235.
    • (2014) Biomaterials , vol.35 , pp. 225-235
    • Xu, H.1    Holzwarth, J.M.2    Yan, Y.3
  • 111
    • 60249091457 scopus 로고    scopus 로고
    • The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration
    • Tabesh H, Amoabediny G, Nik NS, et al. The role of biodegradable engineered scaffolds seeded with Schwann cells for spinal cord regeneration. Neurochem Int. 2009;54:73–83.
    • (2009) Neurochem Int , vol.54 , pp. 73-83
    • Tabesh, H.1    Amoabediny, G.2    Nik, N.S.3
  • 112
    • 0026558260 scopus 로고
    • An alternative incision for approaching recur­rent median nerve compression at the wrist
    • Dellon AL, Chang BW. An alternative incision for approaching recur­rent median nerve compression at the wrist. Plast Reconstr Surg. 1992;89:576–578.
    • (1992) Plast Reconstr Surg , vol.89 , pp. 576-578
    • Dellon, A.L.1    Chang, B.W.2
  • 113
    • 84876679306 scopus 로고    scopus 로고
    • Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration
    • Costa HJZR, Bento RF, Salomone R, et al. Mesenchymal bone marrow stem cells within polyglycolic acid tube observed in vivo after six weeks enhance facial nerve regeneration. Braın Res. 2013;1510:10–21.
    • (2013) Braın Res , vol.1510 , pp. 10-21
    • Costa, H.1    Bento, R.F.2    Salomone, R.3
  • 114
    • 1842832307 scopus 로고    scopus 로고
    • Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process
    • Sundback C, Hadlock T, Cheney M, et al. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials. 2003;24:819–830.
    • (2003) Biomaterials , vol.24 , pp. 819-830
    • Sundback, C.1    Hadlock, T.2    Cheney, M.3
  • 115
    • 19444367047 scopus 로고    scopus 로고
    • Neurotrophin releasing single and multiple lumen nerve conduits.
    • Yang Y, De Laporte L, Rives CB, et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005;104:433–446.
    • (2005) J Control Release , vol.104 , pp. 433-446
    • Yang, Y.1    De Laporte, L.2    Rives, C.B.3
  • 116
    • 33646013600 scopus 로고    scopus 로고
    • Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels
    • Wen X, Tresco PA. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800–3809.
    • (2006) Biomaterials , vol.27 , pp. 3800-3809
    • Wen, X.1    Tresco, P.A.2
  • 117
    • 39049115589 scopus 로고    scopus 로고
    • Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit
    • Oh SH, Kim JH, Song KS, et al. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials. 2008;29:1601–1609.
    • (2008) Biomaterials , vol.29 , pp. 1601-1609
    • Oh, S.H.1    Kim, J.H.2    Song, K.S.3
  • 118
    • 67650438901 scopus 로고    scopus 로고
    • Polypyrrole-coated electro­spun PLGA nanofibers for neural tissue applications
    • Lee JY, Bashur CA, Goldstein AS, et al. Polypyrrole-coated electro­spun PLGA nanofibers for neural tissue applications. Biomaterials. 2009;30:4325–4335.
    • (2009) Biomaterials , vol.30 , pp. 4325-4335
    • Lee, J.Y.1    Bashur, C.A.2    Goldstein, A.S.3
  • 119
    • 78449306520 scopus 로고    scopus 로고
    • Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes periph­eral nerve regeneration in canine tibial nerve defect repair
    • Shen H, Shen ZL, Zhang PH, et al. Ciliary neurotrophic factor-coated polylactic-polyglycolic acid chitosan nerve conduit promotes periph­eral nerve regeneration in canine tibial nerve defect repair. J Biomed Mater Res B Appl Biomater. 2010;95:161–170.
    • (2010) J Biomed Mater Res B Appl Biomater , vol.95 , pp. 161-170
    • Shen, H.1    Shen, Z.L.2    Zhang, P.H.3
  • 120
    • 84882846369 scopus 로고    scopus 로고
    • Comparison and characteriza­tion of multiple biomaterial conduits for peripheral nerve repair
    • Daly WT, Knight AM, Wang H, et al. Comparison and characteriza­tion of multiple biomaterial conduits for peripheral nerve repair. Biomaterials. 2013;34:8630–8639.
    • (2013) Biomaterials , vol.34 , pp. 8630-8639
    • Daly, W.T.1    Knight, A.M.2    Wang, H.3
  • 121
    • 77951522461 scopus 로고    scopus 로고
    • In vitro and in vivo testing of novel ultra thin PCL and PCL/PLA blend films as peripheral nerve conduit
    • Sun M, Kingham PJ, Reid AJ, et al. In vitro and in vivo testing of novel ultra thin PCL and PCL/PLA blend films as peripheral nerve conduit. J Biomed Mater Res Part A. 2010;93:1470–1481.
    • (2010) J Biomed Mater Res Part A , vol.93 , pp. 1470-1481
    • Sun, M.1    Kingham, P.J.2    Reid, A.J.3
  • 122
    • 77957145638 scopus 로고    scopus 로고
    • Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, pre­vent decrease of creatine phosphokinase levels ın muscle, and improve functional recovery in mice
    • Oliveira JT, Almeida FM, Biancalana A, et al. Mesenchymal stem cells in a polycaprolactone conduit enhance median-nerve regeneration, pre­vent decrease of creatine phosphokinase levels ın muscle, and improve functional recovery in mice. Neuroscience. 2010;170:1295–1303.
    • (2010) Neuroscience , vol.170 , pp. 1295-1303
    • Oliveira, J.T.1    Almeida, F.M.2    Biancalana, A.3
  • 123
    • 79251645848 scopus 로고    scopus 로고
    • Material properties and electri­cal stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits
    • Moroder P, Runge MB, Wang H, et al. Material properties and electri­cal stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 2011;7:944–953.
    • (2011) Acta Biomater , vol.7 , pp. 944-953
    • Moroder, P.1    Runge, M.B.2    Wang, H.3
  • 124
    • 84855469882 scopus 로고    scopus 로고
    • Controlled release of vas­cular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycapro­lactone fumarate nerve conduits
    • Rui J, Dadsetan M, Runge MB, et al. Controlled release of vas­cular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycapro­lactone fumarate nerve conduits. Acta Biomater. 2012;8:511–518.
    • (2012) Acta Biomater , vol.8 , pp. 511-518
    • Rui, J.1    Dadsetan, M.2    Runge, M.B.3
  • 125
    • 84867007410 scopus 로고    scopus 로고
    • Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury
    • Frattini F, Lopes FRP, Almeida FM, et al. Mesenchymal stem cells in a polycaprolactone conduit promote sciatic nerve regeneration and sensory neuron survival after nerve injury. Tıssue Eng Part A. 2012;18:2030–2039.
    • (2012) Tıssue Eng Part A , vol.18 , pp. 2030-2039
    • Frattini, F.1    Lopes, F.2    Almeida, F.M.3
  • 126
    • 84879795217 scopus 로고    scopus 로고
    • Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair
    • Mobasseri SA, Terenghi G, Downes S. Micro-structural geometry of thin films intended for the inner lumen of nerve conduits affects nerve repair. J Mater Sci Mater Med. 2013;24(7):1639–1647.
    • (2013) J Mater Sci Mater Med , vol.24 , Issue.7 , pp. 1639-1647
    • Mobasseri, S.A.1    Terenghi, G.2    Downes, S.3
  • 127
    • 84889765244 scopus 로고    scopus 로고
    • Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation
    • Kim JR, Oh SH, Kwon GB, et al. Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Eng Part A. 2013;19:2674–2685.
    • (2013) Tissue Eng Part A , vol.19 , pp. 2674-2685
    • Kim, J.R.1    Oh, S.H.2    Kwon, G.B.3
  • 128
    • 33847146223 scopus 로고    scopus 로고
    • Tissue engineering scaffolds for nerve regeneration manufactured by ink-jet technology
    • Radulescu D, Dhar S, Young CM, et al. Tissue engineering scaffolds for nerve regeneration manufactured by ink-jet technology. Mater Scı Eng C. 2007;27:534–539.
    • (2007) Mater Scı Eng C , vol.27 , pp. 534-539
    • Radulescu, D.1    Dhar, S.2    Young, C.M.3
  • 129
    • 14044272230 scopus 로고    scopus 로고
    • Nerve growth fac­tor expression response to induction agent booster dosing in transfected human embryonic kidney cells
    • McConnell MP, Dhar S, Nguyen T, et al. Nerve growth fac­tor expression response to induction agent booster dosing in transfected human embryonic kidney cells. Plast Reconstr Surg. 2005;115(2):506–514.
    • (2005) Plast Reconstr Surg , vol.115 , Issue.2 , pp. 506-514
    • McConnell, M.P.1    Dhar, S.2    Nguyen, T.3
  • 130
    • 84860303643 scopus 로고    scopus 로고
    • Experience of using the biore­sorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for nerve repair in peripheral nerve defects: Report on a series of 28 lesions
    • Chiriac S, Facca S, Diaconu M, et al. Experience of using the biore­sorbable copolyester poly(DL-lactide-ε-caprolactone) nerve conduit guide Neurolac™ for nerve repair in peripheral nerve defects: report on a series of 28 lesions. J Hand Surg Eur. 2011;37:342–349.
    • (2011) J Hand Surg Eur , vol.37 , pp. 342-349
    • Chiriac, S.1    Facca, S.2    Diaconu, M.3
  • 131
    • 33947405731 scopus 로고    scopus 로고
    • Preliminary studies on peripheral nerve regeneration using a new polyurethane conduit
    • Yin D, Wang X, Yan Y, Zhang R. Preliminary studies on peripheral nerve regeneration using a new polyurethane conduit. J Bioact Compat Polym. 2007;22:143–159.
    • (2007) J Bioact Compat Polym , vol.22 , pp. 143-159
    • Yin, D.1    Wang, X.2    Yan, Y.3    Zhang, R.4
  • 132
    • 84896740386 scopus 로고    scopus 로고
    • Scaffolds from block polyurethanes based on poly(3-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration
    • Niu Y, Chen KC, He T, et al. Scaffolds from block polyurethanes based on poly(3-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Biomaterials. 2014;35:4266–4277.
    • (2014) Biomaterials , vol.35 , pp. 4266-4277
    • Niu, Y.1    Chen, K.C.2    He, T.3
  • 133
    • 0036010297 scopus 로고    scopus 로고
    • Development of a bioartificial nerve graft. II. Nerve regeneration in vitro
    • Rutkowski GE, Heath CA. Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol Prog. 2002;18:373–379.
    • (2002) Biotechnol Prog , vol.18 , pp. 373-379
    • Rutkowski, G.E.1    Heath, C.A.2
  • 134
    • 79960983018 scopus 로고    scopus 로고
    • Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering
    • Shokrgozar MA, Mottaghitalab F, Mottaghitalab V, et al. Fabrication of porous chitosan/poly(vinyl alcohol) reinforced single-walled carbon nanotube nanocomposites for neural tissue engineering. J Bıomed Nanotechnol. 2011;7:1–9.
    • (2011) J Bıomed Nanotechnol , vol.7 , pp. 1-9
    • Shokrgozar, M.A.1    Mottaghitalab, F.2    Mottaghitalab, V.3
  • 135
    • 84856645447 scopus 로고    scopus 로고
    • Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering
    • Alhosseini SN, Moztarzadeh F, Mozafari M, et al. Synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int J Nanomed. 2012;7:25–34.
    • (2012) Int J Nanomed , vol.7 , pp. 25-34
    • Alhosseini, S.N.1    Moztarzadeh, F.2    Mozafari, M.3
  • 136
    • 0024388521 scopus 로고
    • Modified hydroxy­ethylmethacrylate hydrogels as a modelling tool for the study of cell-substratum interactions
    • Bergethon PR, Trinkaus-Randall V, Franzblau C. Modified hydroxy­ethylmethacrylate hydrogels as a modelling tool for the study of cell-substratum interactions. J Cell Sci. 1989;92:111–121.
    • (1989) J Cell Sci , vol.92 , pp. 111-121
    • Bergethon, P.R.1    Trinkaus-Randall, V.2    Franzblau, C.3
  • 137
    • 44949166671 scopus 로고    scopus 로고
    • Three-dimensional cell culture matrices: State of the art
    • Lee J, Cuddihy MJ, Kotov NA. Three-dimensional cell culture matrices: state of the art. Tıssue Eng Part B. 2008;14:61–86.
    • (2008) Tıssue Eng Part B , vol.14 , pp. 61-86
    • Lee, J.1    Cuddihy, M.J.2    Kotov, N.A.3
  • 138
    • 5444258841 scopus 로고    scopus 로고
    • Peptide-modified alginate surfaces as a growth permissive substrate for neur-ite outgrowth
    • Dhoot NO, Tobias CA, Fischer I, et al. Peptide-modified alginate surfaces as a growth permissive substrate for neur-ite outgrowth. J Biomed Mater Res. 2004;71A:191–200.
    • (2004) J Biomed Mater Res , vol.71A , pp. 191-200
    • Dhoot, N.O.1    Tobias, C.A.2    Fischer, I.3
  • 139
    • 7444267844 scopus 로고    scopus 로고
    • Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering
    • Yu TT, Shoichet MS. Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials. 2005;26:1507–1514.
    • (2005) Biomaterials , vol.26 , pp. 1507-1514
    • Yu, T.T.1    Shoichet, M.S.2
  • 140
    • 29244439335 scopus 로고    scopus 로고
    • Fast-gelling injectable blend of hyaluronan and methylcellulosefor intrathecal, localized delivery to the injured spinal cord
    • Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulosefor intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2006:27:2370–2379.
    • (2006) Biomaterials , vol.27 , pp. 2370-2379
    • Gupta, D.1    Tator, C.H.2    Shoichet, M.S.3
  • 141
    • 62149124278 scopus 로고    scopus 로고
    • Peroneal nerve regeneration using a unique bilayer polyurethane-collagen guide conduit
    • Wang X, Cui T, Yan Y, Zhang R. Peroneal nerve regeneration using a unique bilayer polyurethane-collagen guide conduit. J Bioact Compat Polym. 2009;24(2):109–127.
    • (2009) J Bioact Compat Polym , vol.24 , Issue.2 , pp. 109-127
    • Wang, X.1    Cui, T.2    Yan, Y.3    Zhang, R.4
  • 142
    • 79955521401 scopus 로고    scopus 로고
    • PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration
    • Xu H, Yan Y, Li S. PDLLA/chondroitin sulfate/chitosan/NGF conduits for peripheral nerve regeneration. Biomaterials. 2011;32:4506–4515.
    • (2011) Biomaterials , vol.32 , pp. 4506-4515
    • Xu, H.1    Yan, Y.2    Li, S.3
  • 143
    • 84867143347 scopus 로고    scopus 로고
    • End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration
    • Lee BK, Ju YM, Cho JG, et al. End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials. 2012;33:9027–9036.
    • (2012) Biomaterials , vol.33 , pp. 9027-9036
    • Lee, B.K.1    Ju, Y.M.2    Cho, J.G.3
  • 144
    • 73549122763 scopus 로고    scopus 로고
    • Polyester based nerve guidance conduit design
    • Yucel D, Torun Kose G, Hasircı V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31(7):1596–1603.
    • (2010) Biomaterials , vol.31 , Issue.7 , pp. 1596-1603
    • Yucel, D.1    Torun Kose, G.2    Hasircı, V.3
  • 145
    • 78650260962 scopus 로고    scopus 로고
    • Tissue engineered, guided nerve tube consisting of aligned neural stem cells and astrocytes
    • Yucel D, Torun Kose G, Hasircı V. Tissue engineered, guided nerve tube consisting of aligned neural stem cells and astrocytes. Biomacromolecules. 2010;11:3584–3591.
    • (2010) Biomacromolecules , vol.11 , pp. 3584-3591
    • Yucel, D.1    Torun Kose, G.2    Hasircı, V.3
  • 146
    • 79953660718 scopus 로고    scopus 로고
    • Fabrication and cellular compat­ibility of aligned chitosan–PCL fibers for nerve tissue regeneration
    • Cooper A, Bhattarai N, Zhang M. Fabrication and cellular compat­ibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr Polym. 2011;85(1):149–156.
    • (2011) Carbohydr Polym , vol.85 , Issue.1 , pp. 149-156
    • Cooper, A.1    Bhattarai, N.2    Zhang, M.3
  • 147
    • 0030592689 scopus 로고    scopus 로고
    • Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: A histological and electrophysiological evaluation of regenerated nerves
    • Kiyotani T, Teramachi M, Takimoto Y, et al. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 1996;740:66–74.
    • (1996) Brain Res , vol.740 , pp. 66-74
    • Kiyotani, T.1    Teramachi, M.2    Takimoto, Y.3
  • 148
    • 0034705742 scopus 로고    scopus 로고
    • Peripheral nerve regen­eration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: A histological and electrophysiological evaluation of regenerated nerves
    • Matsumato K, Ohnishi K, Kiyotani T, et al. Peripheral nerve regen­eration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000;868:315–328.
    • (2000) Brain Res , vol.868 , pp. 315-328
    • Matsumato, K.1    Ohnishi, K.2    Kiyotani, T.3
  • 149
    • 0035192074 scopus 로고    scopus 로고
    • Regeneration of canine peroneal nerve with the use of a polyglycolic acid-collagen tube filled with laminin-soaked collagen sponge: A comparative study of collagen sponge and collagen fibers as filling materials for nerve conduits
    • Toba T, Nakamura T, Shimizu Y, et al. Regeneration of canine peroneal nerve with the use of a polyglycolic acid-collagen tube filled with laminin-soaked collagen sponge: a comparative study of collagen sponge and collagen fibers as filling materials for nerve conduits. J Biomed Mater Res. 2001;58:622–630.
    • (2001) J Biomed Mater Res , vol.58 , pp. 622-630
    • Toba, T.1    Nakamura, T.2    Shimizu, Y.3
  • 150
    • 5644226656 scopus 로고    scopus 로고
    • Experimental study on the regeneration of peripheral nerve gaps through a polygly­colic acid-collagen (PGA-collagen) tube
    • Nakamura T, Inada Y, Fukuda S, et al. Experimental study on the regeneration of peripheral nerve gaps through a polygly­colic acid-collagen (PGA-collagen) tube. Brain Res. 2004;1027:18–29.
    • (2004) Brain Res , vol.1027 , pp. 18-29
    • Nakamura, T.1    Inada, Y.2    Fukuda, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.