메뉴 건너뛰기




Volumn 852, Issue , 2014, Pages 20-27

Firefly as a novel swarm intelligence variable selection method in spectroscopy

Author keywords

Chemometrics; Firefly algorithm; Spectroscopy; Variable selection

Indexed keywords

BIOLUMINESCENCE; CALIBRATION; FORECASTING; GENETIC ALGORITHMS; LEAST SQUARES APPROXIMATIONS; PARTICLE SWARM OPTIMIZATION (PSO); SPECTROSCOPY; SWARM INTELLIGENCE;

EID: 84912574588     PISSN: 00032670     EISSN: 18734324     Source Type: Journal    
DOI: 10.1016/j.aca.2014.09.045     Document Type: Article
Times cited : (37)

References (40)
  • 3
    • 0026349146 scopus 로고
    • Chemometrics, why, what and where to next?
    • Wold S. Chemometrics, why, what and where to next?. J. Pharm. Biomed. Anal. 1991, 9:589-596.
    • (1991) J. Pharm. Biomed. Anal. , vol.9 , pp. 589-596
    • Wold, S.1
  • 4
    • 0345603576 scopus 로고    scopus 로고
    • Multivariate calibration: what is in chemometrics for the analytical chemist?
    • Bro R. Multivariate calibration: what is in chemometrics for the analytical chemist?. Anal. Chim. Acta. 2003, 500:185-194.
    • (2003) Anal. Chim. Acta. , vol.500 , pp. 185-194
    • Bro, R.1
  • 5
    • 0033694808 scopus 로고    scopus 로고
    • Introduction to multivariate calibration in analytical chemistry
    • Brereton R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125:2125-2154.
    • (2000) Analyst , vol.125 , pp. 2125-2154
    • Brereton, R.G.1
  • 7
    • 0037470097 scopus 로고    scopus 로고
    • Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures
    • Wentzell P.D., Vega Montoto L. Comparison of principal components regression and partial least squares regression through generic simulations of complex mixtures. Chemom. Intell. Lab. Syst. 2003, 65:257-279.
    • (2003) Chemom. Intell. Lab. Syst. , vol.65 , pp. 257-279
    • Wentzell, P.D.1    Vega Montoto, L.2
  • 8
    • 0003188418 scopus 로고    scopus 로고
    • Theoretical justification of wavelength selection in pls calibration: development of a new algorithm
    • Spiegelman C.H., McShane M.J., Goetz M.J., Motamedi M., Yue Q.L., Cote G.L. Theoretical justification of wavelength selection in pls calibration: development of a new algorithm. Anal. Chem. 1998, 70:35-44.
    • (1998) Anal. Chem. , vol.70 , pp. 35-44
    • Spiegelman, C.H.1    McShane, M.J.2    Goetz, M.J.3    Motamedi, M.4    Yue, Q.L.5    Cote, G.L.6
  • 9
    • 84878633269 scopus 로고    scopus 로고
    • Predictive-property-ranked variable reduction with final complexity adapted models in partial least squares modeling for multiple responses
    • Andries J.P.M., Vander Heyden Y., Buydens L.M.C. Predictive-property-ranked variable reduction with final complexity adapted models in partial least squares modeling for multiple responses. Anal. Chem. 2013, 85:5444-5453.
    • (2013) Anal. Chem. , vol.85 , pp. 5444-5453
    • Andries, J.P.M.1    Vander Heyden, Y.2    Buydens, L.M.C.3
  • 10
    • 0030333180 scopus 로고    scopus 로고
    • Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: application to near-infrared spectroscopy
    • Bangalore A.S., Shaffer R.E., Small G.W., Arnold M.A. Genetic algorithm-based method for selecting wavelengths and model size for use with partial least-squares regression: application to near-infrared spectroscopy. Anal. Chem. 1996, 68:4200-4212.
    • (1996) Anal. Chem. , vol.68 , pp. 4200-4212
    • Bangalore, A.S.1    Shaffer, R.E.2    Small, G.W.3    Arnold, M.A.4
  • 12
    • 69349104350 scopus 로고    scopus 로고
    • Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions
    • Goodarzi M., Freitas M.P., Jensen R. Ant colony optimization as a feature selection method in the QSAR modeling of anti-HIV-1 activities of 3-(3,5-dimethylbenzyl) uracil derivatives using MLR, PLS and SVM regressions. Chemom. Intell. Lab. Syst. 2009, 98:123-129.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 123-129
    • Goodarzi, M.1    Freitas, M.P.2    Jensen, R.3
  • 13
    • 84889884834 scopus 로고    scopus 로고
    • Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10 A
    • Goodarzi M., Saeys W., Deeb O., Pieters S., Vander Heyden Y. Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10 A. Chem. Biol. Drug Des. 2013, 82:685-696.
    • (2013) Chem. Biol. Drug Des. , vol.82 , pp. 685-696
    • Goodarzi, M.1    Saeys, W.2    Deeb, O.3    Pieters, S.4    Vander Heyden, Y.5
  • 14
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization
    • Yang X.S. Firefly algorithms for multimodal optimization. Lect. Notes Comput. Sci. 2009, 5792:169-178.
    • (2009) Lect. Notes Comput. Sci. , vol.5792 , pp. 169-178
    • Yang, X.S.1
  • 15
    • 79953855364 scopus 로고    scopus 로고
    • Firefly algorithm stochastic test functions and design optimisation
    • Yang X.S. Firefly algorithm stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2:78.
    • (2010) Int. J. Bio-Inspired Comput. , vol.2 , pp. 78
    • Yang, X.S.1
  • 18
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: how and when to use them
    • Leardi R., González A.L. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom. Intell. Lab. Syst. 1998, 41:195-207.
    • (1998) Chemom. Intell. Lab. Syst. , vol.41 , pp. 195-207
    • Leardi, R.1    González, A.L.2
  • 19
    • 0042318560 scopus 로고    scopus 로고
    • A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy
    • Goicoechea H.C.C., Olivieri A.C. A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy. J. Chemom. 2003, 17:338-345.
    • (2003) J. Chemom. , vol.17 , pp. 338-345
    • Goicoechea, H.C.C.1    Olivieri, A.C.2
  • 20
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard R.W., Stone L.A. Computer aided design of experiments. Technometrics 1969, 11:137-148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 21
    • 84952126648 scopus 로고
    • Validation of regression models, methods and examples
    • Snee R.D. Validation of regression models, methods and examples. Technometrics 1977, 19:415-428.
    • (1977) Technometrics , vol.19 , pp. 415-428
    • Snee, R.D.1
  • 22
  • 23
    • 0038322210 scopus 로고    scopus 로고
    • Development of nondestructive screening methods for single kernel characterization of wheat
    • Nielsen J.P., Pedersen D.K., Munck L. Development of nondestructive screening methods for single kernel characterization of wheat. Cereal Chem. 2003, 80:274-280.
    • (2003) Cereal Chem. , vol.80 , pp. 274-280
    • Nielsen, J.P.1    Pedersen, D.K.2    Munck, L.3
  • 25
    • 56949090101 scopus 로고    scopus 로고
    • Bayesian linear regression and variable selection for spectroscopic calibration
    • Chen T., Martin E. Bayesian linear regression and variable selection for spectroscopic calibration. Anal. Chim. Acta 2009, 631:13-21.
    • (2009) Anal. Chim. Acta , vol.631 , pp. 13-21
    • Chen, T.1    Martin, E.2
  • 26
    • 0037299989 scopus 로고    scopus 로고
    • Dual-domain regression analysis for spectral calibration models
    • Tan H., Brown S.D. Dual-domain regression analysis for spectral calibration models. J. Chemom. 2003, 17:111-122.
    • (2003) J. Chemom. , vol.17 , pp. 111-122
    • Tan, H.1    Brown, S.D.2
  • 27
    • 1542383676 scopus 로고
    • Locally weighted regression and scatter correction for near-infrared reflectance data
    • Naes T., Isaksson T., Kowalski B. Locally weighted regression and scatter correction for near-infrared reflectance data. Anal. Chem. 1990, 62:668-680.
    • (1990) Anal. Chem. , vol.62 , pp. 668-680
    • Naes, T.1    Isaksson, T.2    Kowalski, B.3
  • 28
    • 46849115785 scopus 로고    scopus 로고
    • Increasing robustness against changes in the interferent structure by incorporating prior information in the augmented classical least squares (ACLS) framework
    • Saeys W., Beullens K., Lammertyn J., Ramon H., Naes T. Increasing robustness against changes in the interferent structure by incorporating prior information in the augmented classical least squares (ACLS) framework. Anal. Chem. 2008, 80:4951-4959.
    • (2008) Anal. Chem. , vol.80 , pp. 4951-4959
    • Saeys, W.1    Beullens, K.2    Lammertyn, J.3    Ramon, H.4    Naes, T.5
  • 30
    • 33750153235 scopus 로고    scopus 로고
    • Nondestructive measurement of the internal quality of bayberry juice using vis/NIR spectroscopy
    • Shao Y., He Y. Nondestructive measurement of the internal quality of bayberry juice using vis/NIR spectroscopy. J. Food Eng. 2007, 79:1015-1019.
    • (2007) J. Food Eng. , vol.79 , pp. 1015-1019
    • Shao, Y.1    He, Y.2
  • 31
    • 0002526430 scopus 로고
    • Near versus mid-infrared diffuse reflectance spectroscopy for the quantitative determination of the composition of forages and by-products
    • Reeves J.B. Near versus mid-infrared diffuse reflectance spectroscopy for the quantitative determination of the composition of forages and by-products. J. Near Infrared Spectrosc. 1994, 2:49-57.
    • (1994) J. Near Infrared Spectrosc. , vol.2 , pp. 49-57
    • Reeves, J.B.1
  • 32
    • 0035159079 scopus 로고    scopus 로고
    • Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment
    • Šašić S., Ozaki Y. Short-wave near-infrared spectroscopy of biological fluids. 1. Quantitative analysis of fat, protein, and lactose in raw milk by partial least-squares regression and band assignment. Anal. Chem. 2001, 73:64-71.
    • (2001) Anal. Chem. , vol.73 , pp. 64-71
    • Šašić, S.1    Ozaki, Y.2
  • 33
    • 84912568028 scopus 로고    scopus 로고
    • Partial least squares regression and projection on latent structure regression (PLS regression)
    • Abdi H., Williams L.J. Partial least squares regression and projection on latent structure regression (PLS regression). Encycl. Res. Des. Thousand Oaks 2010, 23:655-660.
    • (2010) Encycl. Res. Des. Thousand Oaks , vol.23 , pp. 655-660
    • Abdi, H.1    Williams, L.J.2
  • 34
    • 33846387184 scopus 로고    scopus 로고
    • Theory and application of near infrared reflectance spectroscopy in determination of food quality
    • Cen H., He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18:72-83.
    • (2007) Trends Food Sci. Technol. , vol.18 , pp. 72-83
    • Cen, H.1    He, Y.2
  • 35
    • 33645236777 scopus 로고    scopus 로고
    • Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500nm
    • Bashkatov A.N., Genina É.A, Kochubey V.I., Tuchin V.V. Optical properties of the subcutaneous adipose tissue in the spectral range 400-2500nm. Opt. Spectrosc. 2005, 99:836-842.
    • (2005) Opt. Spectrosc. , vol.99 , pp. 836-842
    • Bashkatov, A.N.1    Genina, É.A2    Kochubey, V.I.3    Tuchin, V.V.4
  • 36
    • 0026261144 scopus 로고
    • Near infrared spectral patterns of fatty acid analysis from fats and oils
    • Sato T., Kawano S., Iwamoto M. Near infrared spectral patterns of fatty acid analysis from fats and oils. J. Am. Oil Chem. Soc. 1991, 68:827-833.
    • (1991) J. Am. Oil Chem. Soc. , vol.68 , pp. 827-833
    • Sato, T.1    Kawano, S.2    Iwamoto, M.3
  • 37
    • 34848857912 scopus 로고    scopus 로고
    • Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder
    • Bruun S.W., Søndergaard I., Jacobsen S. Analysis of protein structures and interactions in complex food by near-infrared spectroscopy. 1. Gluten powder. J. Agric. Food Chem. 2007, 55:7234-7243.
    • (2007) J. Agric. Food Chem. , vol.55 , pp. 7234-7243
    • Bruun, S.W.1    Søndergaard, I.2    Jacobsen, S.3
  • 38
    • 0742287068 scopus 로고    scopus 로고
    • Feasibility study for the rapid determination of the amylose content in starch by near-infrared spectroscopy
    • Fertig C.C., Podczeck F., Jee R.D., Smith M.R. Feasibility study for the rapid determination of the amylose content in starch by near-infrared spectroscopy. Eur. J. Pharm. Sci. 2004, 21:155-159.
    • (2004) Eur. J. Pharm. Sci. , vol.21 , pp. 155-159
    • Fertig, C.C.1    Podczeck, F.2    Jee, R.D.3    Smith, M.R.4
  • 39
    • 84876992632 scopus 로고    scopus 로고
    • Efficient use of pure component and interferent spectra in multivariate calibration
    • Sharma S., Goodarzi M., Wynants L., Ramon H., Saeys W. Efficient use of pure component and interferent spectra in multivariate calibration. Anal. Chim. Acta 2013, 778:15-23.
    • (2013) Anal. Chim. Acta , vol.778 , pp. 15-23
    • Sharma, S.1    Goodarzi, M.2    Wynants, L.3    Ramon, H.4    Saeys, W.5
  • 40
    • 84892714584 scopus 로고    scopus 로고
    • Performance evaluation of preprocessing techniques utilizing expert information in multivariate calibration
    • Sharma S., Goodarzi M., Ramon H., Saeys W. Performance evaluation of preprocessing techniques utilizing expert information in multivariate calibration. Talanta 2014, 121:105-112.
    • (2014) Talanta , vol.121 , pp. 105-112
    • Sharma, S.1    Goodarzi, M.2    Ramon, H.3    Saeys, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.