메뉴 건너뛰기




Volumn 127, Issue , 2014, Pages 206-213

Application of SVR with chaotic GASA algorithm to forecast Taiwanese 3G mobile phone demand

Author keywords

Cat mapping function; Chaotic genetic algorithm simulated annealing (CGASA); Support vector regression (SVR); Third generation (3G) phones demand

Indexed keywords

AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS; CAT MAPPINGS; CHAOTIC GENETIC ALGORITHM-SIMULATED ANNEALING (CGASA); FORECASTING PERFORMANCE; GENERAL REGRESSION NEURAL NETWORK; NONLINEAR CHARACTERISTICS; SUPPORT VECTOR REGRESSION (SVR); THIRD GENERATION (3G) PHONES DEMANDS;

EID: 84888434020     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.010     Document Type: Article
Times cited : (9)

References (48)
  • 1
    • 84984526179 scopus 로고
    • Tourism forecasting: a review of empirical research
    • Sheldon P.J., Var T. Tourism forecasting: a review of empirical research. J. Forecast. 1985, 4:183-195.
    • (1985) J. Forecast. , vol.4 , pp. 183-195
    • Sheldon, P.J.1    Var, T.2
  • 5
    • 84887252594 scopus 로고    scopus 로고
    • Support vector machine for function approximation, regression estimation, and signal processing
    • Vapnik V., Golowich S., Smola A. Support vector machine for function approximation, regression estimation, and signal processing. Adv. Neural Inf. Process. Syst. 1996, 9:281-287.
    • (1996) Adv. Neural Inf. Process. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 6
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • Cao L. Support vector machines experts for time series forecasting. Neurocomputing 2003, 51:321-339.
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 7
    • 13544267510 scopus 로고    scopus 로고
    • Forecasting stock market movement direction with support vector machine
    • Huang W., Nakamori Y., Wang S.Y. Forecasting stock market movement direction with support vector machine. Comput. Oper. Res. 2005, 32:2513-2522.
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2513-2522
    • Huang, W.1    Nakamori, Y.2    Wang, S.Y.3
  • 8
    • 77149138054 scopus 로고    scopus 로고
    • Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting
    • Hung W.M., Hong W.C. Application of SVR with improved ant colony optimization algorithms in exchange rate forecasting. Control Cybern. 2009, 38:863-891.
    • (2009) Control Cybern. , vol.38 , pp. 863-891
    • Hung, W.M.1    Hong, W.C.2
  • 9
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai P.F., Lin C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33:497-505.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 10
    • 33745056237 scopus 로고    scopus 로고
    • A hybrid support vector machine regression for exchange rate prediction
    • Pai P.F., Lin C.S., Hong W.C., Chen C.T. A hybrid support vector machine regression for exchange rate prediction. Int. J. Inf. Manage. Sci. 2006, 17:19-32.
    • (2006) Int. J. Inf. Manage. Sci. , vol.17 , pp. 19-32
    • Pai, P.F.1    Lin, C.S.2    Hong, W.C.3    Chen, C.T.4
  • 11
    • 78751627947 scopus 로고    scopus 로고
    • SVR with hybrid chaotic genetic algorithms for tourism demand forecasting
    • Hong W.C., Dong Y., Chen L.Y., Wei S.Y. SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Soft Comput. 2011, 11:1881-1890.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 1881-1890
    • Hong, W.C.1    Dong, Y.2    Chen, L.Y.3    Wei, S.Y.4
  • 12
    • 27744588529 scopus 로고    scopus 로고
    • An improved neural network model in forecasting arrivals
    • Pai P.F., Hong W.C. An improved neural network model in forecasting arrivals. Ann. Tourism Res. 2005, 32:1138-1141.
    • (2005) Ann. Tourism Res. , vol.32 , pp. 1138-1141
    • Pai, P.F.1    Hong, W.C.2
  • 13
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • Hong W.C. Rainfall forecasting by technological machine learning models. Appl. Math. Comput. 2008, 200:41-57.
    • (2008) Appl. Math. Comput. , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 14
    • 33846428782 scopus 로고    scopus 로고
    • Potential assessment of the support vector regression technique in rainfall forecasting
    • Hong W.C., Pai P.F. Potential assessment of the support vector regression technique in rainfall forecasting. Water Resour. Manage. 2007, 21:495-513.
    • (2007) Water Resour. Manage. , vol.21 , pp. 495-513
    • Hong, W.C.1    Pai, P.F.2
  • 15
    • 33947537723 scopus 로고    scopus 로고
    • A recurrent support vector regression model in rainfall forecasting
    • Pai P.F., Hong W.C. A recurrent support vector regression model in rainfall forecasting. Hydrolog. Processes 2007, 21:819-827.
    • (2007) Hydrolog. Processes , vol.21 , pp. 819-827
    • Pai, P.F.1    Hong, W.C.2
  • 17
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74:2096-2107.
    • (2011) Neurocomputing , vol.74 , pp. 2096-2107
    • Hong, W.C.1
  • 18
    • 79952362137 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR traffic flow forecasting model
    • Hong W.C., Dong Y., Zheng F., Wei S.Y. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl. Math. Comput. 2011, 217:6733-6747.
    • (2011) Appl. Math. Comput. , vol.217 , pp. 6733-6747
    • Hong, W.C.1    Dong, Y.2    Zheng, F.3    Wei, S.Y.4
  • 19
    • 78549267441 scopus 로고    scopus 로고
    • Forecasting urban traffic flow by SVR with continuous ACO
    • Hong W.C., Dong Y., Zheng F., Lai C.Y. Forecasting urban traffic flow by SVR with continuous ACO. Appl. Math. Modelling 2011, 35:1282-1291.
    • (2011) Appl. Math. Modelling , vol.35 , pp. 1282-1291
    • Hong, W.C.1    Dong, Y.2    Zheng, F.3    Lai, C.Y.4
  • 20
    • 67650639040 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR-based electric load forecasting model
    • Hong W.C. Hybrid evolutionary algorithms in a SVR-based electric load forecasting model. Int. J. Electr. Power Energy Syst. 2009, 31:409-417.
    • (2009) Int. J. Electr. Power Energy Syst. , vol.31 , pp. 409-417
    • Hong, W.C.1
  • 21
    • 55749112476 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model
    • Hong W.C. Chaotic particle swarm optimization algorithm in a support vector regression electric load forecasting model. Energy Convers. Manage. 2009, 50:105-117.
    • (2009) Energy Convers. Manage. , vol.50 , pp. 105-117
    • Hong, W.C.1
  • 22
    • 58249135669 scopus 로고    scopus 로고
    • Electric load forecasting by support vector model
    • Hong W.C. Electric load forecasting by support vector model. Appl. Math. Modelling 2009, 33:2444-2454.
    • (2009) Appl. Math. Modelling , vol.33 , pp. 2444-2454
    • Hong, W.C.1
  • 23
    • 77958467490 scopus 로고    scopus 로고
    • Application of chaotic ant swarm optimization in electric load forecasting
    • Hong W.C. Application of chaotic ant swarm optimization in electric load forecasting. Energy Policy 2010, 38:5830-5839.
    • (2010) Energy Policy , vol.38 , pp. 5830-5839
    • Hong, W.C.1
  • 24
    • 18144394762 scopus 로고    scopus 로고
    • Forecasting regional electric load based on recurrent support vector machines with genetic algorithms
    • Pai P.F., Hong W.C. Forecasting regional electric load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 2005, 74:417-425.
    • (2005) Electr. Power Syst. Res. , vol.74 , pp. 417-425
    • Pai, P.F.1    Hong, W.C.2
  • 25
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manage. 2005, 46:2669-2688.
    • (2005) Energy Convers. Manage. , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 26
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V., Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 2004, 17:113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 28
  • 29
    • 0027667217 scopus 로고
    • Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation
    • Lee J., Johnson G.E. Optimal tolerance allotment using a genetic algorithm and truncated Monte Carlo simulation. Comput. Aided Des. 1983, 25:601-611.
    • (1983) Comput. Aided Des. , vol.25 , pp. 601-611
    • Lee, J.1    Johnson, G.E.2
  • 30
    • 11844250090 scopus 로고    scopus 로고
    • Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing
    • Shieh H.J., Peralta R.C. Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing. J. Water Resour. Plann. Manage. 2005, 131:67-78.
    • (2005) J. Water Resour. Plann. Manage. , vol.131 , pp. 67-78
    • Shieh, H.J.1    Peralta, R.C.2
  • 31
    • 0037282048 scopus 로고    scopus 로고
    • A GA-SA multiobjective hybrid search algorithm for integrating lot sizing and sequencing in flow-line scheduling
    • Ponnambalam S.G., Reddy M.M. A GA-SA multiobjective hybrid search algorithm for integrating lot sizing and sequencing in flow-line scheduling. Int. J. Adv. Manuf. Technol. 2003, 21:126-137.
    • (2003) Int. J. Adv. Manuf. Technol. , vol.21 , pp. 126-137
    • Ponnambalam, S.G.1    Reddy, M.M.2
  • 32
    • 33645530240 scopus 로고    scopus 로고
    • Simulated annealing-genetic algorithm for transit network optimization
    • Zhao F., Zeng X. Simulated annealing-genetic algorithm for transit network optimization. J. Comput. Civil Eng. 2006, 20:57-68.
    • (2006) J. Comput. Civil Eng. , vol.20 , pp. 57-68
    • Zhao, F.1    Zeng, X.2
  • 33
    • 0012586289 scopus 로고    scopus 로고
    • A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems
    • Cordón O., Moya F., Zarco C. A new evolutionary algorithm combining simulated annealing and genetic programming for relevance feedback in fuzzy information retrieval systems. Soft Comput. 2002, 6:308-319.
    • (2002) Soft Comput. , vol.6 , pp. 308-319
    • Cordón, O.1    Moya, F.2    Zarco, C.3
  • 34
    • 22044438294 scopus 로고    scopus 로고
    • Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing
    • Ganesh K., Punniyamoorthy M. Optimization of continuous-time production planning using hybrid genetic algorithms-simulated annealing. Int. J. Adv. Manuf. Technol. 2005, 26:148-154.
    • (2005) Int. J. Adv. Manuf. Technol. , vol.26 , pp. 148-154
    • Ganesh, K.1    Punniyamoorthy, M.2
  • 35
    • 9944228654 scopus 로고    scopus 로고
    • Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing
    • Wang Z.G., Wong Y.S., Rahman M. Optimisation of multi-pass milling using genetic algorithm and genetic simulated annealing. Int. J. Adv. Manuf. Technol. 2004, 24:727-732.
    • (2004) Int. J. Adv. Manuf. Technol. , vol.24 , pp. 727-732
    • Wang, Z.G.1    Wong, Y.S.2    Rahman, M.3
  • 36
    • 0037278595 scopus 로고    scopus 로고
    • A simulated annealing genetic algorithm for the electrical power districting problem
    • Bergey P.K., Ragsdale C.T., Hoskote M. A simulated annealing genetic algorithm for the electrical power districting problem. Ann. Oper. Res. 2003, 121:33-55.
    • (2003) Ann. Oper. Res. , vol.121 , pp. 33-55
    • Bergey, P.K.1    Ragsdale, C.T.2    Hoskote, M.3
  • 38
    • 18444389480 scopus 로고    scopus 로고
    • Improved particle swarm optimization combined with chaos, Chaos
    • Liu B., Wang L., Jin Y.H., Tang F., Huang D.X. Improved particle swarm optimization combined with chaos, Chaos. Solitons Fractals 2005, 25:1261-1271.
    • (2005) Solitons Fractals , vol.25 , pp. 1261-1271
    • Liu, B.1    Wang, L.2    Jin, Y.H.3    Tang, F.4    Huang, D.X.5
  • 39
    • 33845866875 scopus 로고    scopus 로고
    • Chaotic particle swarm optimization for economic dispatch considering the generator constraints
    • Cai J., Ma X., Li L., Peng H. Chaotic particle swarm optimization for economic dispatch considering the generator constraints. Energy Convers. Manage. 2007, 48:645-653.
    • (2007) Energy Convers. Manage. , vol.48 , pp. 645-653
    • Cai, J.1    Ma, X.2    Li, L.3    Peng, H.4
  • 41
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • Amari S., Wu S. Improving support vector machine classifiers by modifying kernel functions. Neural Networks 1999, 12:783-789.
    • (1999) Neural Networks , vol.12 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 42
    • 1342306864 scopus 로고    scopus 로고
    • A symmetric image encryption scheme based on 3D chaotic cat maps
    • Chen G., Mao Y., Chui C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004, 21:749-761.
    • (2004) Chaos Solitons Fractals , vol.21 , pp. 749-761
    • Chen, G.1    Mao, Y.2    Chui, C.K.3
  • 43
    • 44649106898 scopus 로고    scopus 로고
    • Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos
    • Cheng C.T., Wang W.C., Xu D.M., Chau K.W. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manage. 2008, 22:895-909.
    • (2008) Water Resour. Manage. , vol.22 , pp. 895-909
    • Cheng, C.T.1    Wang, W.C.2    Xu, D.M.3    Chau, K.W.4
  • 45
    • 33645856653 scopus 로고
    • Global optimization and simulated annealing
    • Dekkers A., Aarts E.H.L. Global optimization and simulated annealing. Math. Programming 1991, 50:367-393.
    • (1991) Math. Programming , vol.50 , pp. 367-393
    • Dekkers, A.1    Aarts, E.H.L.2
  • 46
    • 84888428009 scopus 로고    scopus 로고
    • Chunghwa Telecom Co. Ltd. Monthly Revenue Reports. Financial Information Service;
    • Chunghwa Telecom Co. Ltd. Monthly Revenue Reports. Financial Information Service; 2008, http://www.cht.com.tw/CompanyCat.php?Page=FileDownload&CatID=798.
    • (2008)
  • 47
    • 77249157692 scopus 로고    scopus 로고
    • Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms
    • Hong W.C., Dong Y., Chen L.-Y., Lai C.-Y. Taiwanese 3G mobile phone demand forecasting by SVR with hybrid evolutionary algorithms. Expert Syst. Appl. 2010, 37:4452-4462.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4452-4462
    • Hong, W.C.1    Dong, Y.2    Chen, L.-Y.3    Lai, C.-Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.