메뉴 건너뛰기




Volumn 15, Issue 6, 2014, Pages 662-683

Texture-based fruit detection

Author keywords

Fruit detection; Keypoint descriptors; Keypoint extraction; Object detection; Support vector machine classification; Texture analysis

Indexed keywords

EMPIRICAL ANALYSIS; FRUIT; FUTURE PROSPECT; PRECISION AGRICULTURE; SENSOR; TEXTURE;

EID: 84911998069     PISSN: 13852256     EISSN: 15731618     Source Type: Journal    
DOI: 10.1007/s11119-014-9361-x     Document Type: Article
Times cited : (76)

References (33)
  • 2
    • 84872619601 scopus 로고    scopus 로고
    • Green citrus detection using fast Fourier transform (FFT) leakage
    • Bansal, R., Lee, W., & Satish, S. (2012). Green citrus detection using fast Fourier transform (FFT) leakage. Precision Agriculture,14(1), 59–70.
    • (2012) Precision Agriculture , vol.14 , Issue.1 , pp. 59-70
    • Bansal, R.1    Lee, W.2    Satish, S.3
  • 4
    • 78149309478 scopus 로고    scopus 로고
    • BRIEF: Binary robust independent elementary features
    • Heidelberg: Springer
    • Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010). BRIEF: Binary robust independent elementary features. In Daniilidis, K., Maragos, P., Paragios, N. (Eds.), Proceedings of the European Conference on Computer Vision (pp. 778–792). Heidelberg: Springer.
    • (2010) 778–792)
    • Calonder, M.1    Lepetit, V.2    Strecha, C.3    Fua, P.4
  • 5
    • 84912009319 scopus 로고    scopus 로고
    • Chang, C.C., & Lin, C.J. (2001). LIBSVM: A library for support vector machines. Retrieved March 12, 2014, from
    • Chang, C.C., & Lin, C.J. (2001). LIBSVM: A library for support vector machines. Retrieved March 12, 2014, from http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 6
    • 79953684565 scopus 로고    scopus 로고
    • Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables
    • Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology,4(4), 487–504.
    • (2011) Food and Bioprocess Technology , vol.4 , Issue.4 , pp. 487-504
    • Cubero, S.1    Aleixos, N.2    Moltó, E.3    Gómez-Sanchis, J.4    Blasco, J.5
  • 8
    • 22544459638 scopus 로고    scopus 로고
    • Learning techniques used in computer vision for food quality evaluation: A review
    • Du, C. J., & Sun, D. W. (2006). Learning techniques used in computer vision for food quality evaluation: A review. Journal of Food Engineering,72(1), 39–55.
    • (2006) Journal of Food Engineering , vol.72 , Issue.1 , pp. 39-55
    • Du, C.J.1    Sun, D.W.2
  • 10
    • 0012784566 scopus 로고    scopus 로고
    • A vision system based on a laser rangefinder applied to robotic fruit harvesting
    • Jiménez, R. A., Ceres, R., & Pons, L. J. (2000a). A vision system based on a laser rangefinder applied to robotic fruit harvesting. Machine Vision and Applications,11(6), 321–329.
    • (2000) Machine Vision and Applications , vol.11 , Issue.6 , pp. 321-329
    • Jiménez, R.A.1    Ceres, R.2    Pons, L.J.3
  • 12
  • 13
    • 48149110362 scopus 로고    scopus 로고
    • Kaewapichai, W., Kaewtrakulpong, P., Prateepasen, A., & Khongkraphan, K. (2007). Fitting a pineapple model for automatic maturity grading. In Proceedings of the IEEE International Conference on Image Processing (pp. I-257–I-260). New York: IEEE
    • Kaewapichai, W., Kaewtrakulpong, P., Prateepasen, A., & Khongkraphan, K. (2007). Fitting a pineapple model for automatic maturity grading. In Proceedings of the IEEE International Conference on Image Processing (pp. I-257–I-260). New York: IEEE.
  • 14
    • 27744432727 scopus 로고    scopus 로고
    • Kitamura, S., & Oka, K. (2005). Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. In Proceedings of the IEEE Conference on Mechatronics and Automation (pp. 1807–1812). New York: IEEE
    • Kitamura, S., & Oka, K. (2005). Recognition and cutting system of sweet pepper for picking robot in greenhouse horticulture. In Proceedings of the IEEE Conference on Mechatronics and Automation (pp. 1807–1812). New York: IEEE.
  • 15
  • 16
    • 78649715072 scopus 로고    scopus 로고
    • Development of a real-time fruit recognition system for pineapple harvesting robots. Paper No
    • ASABE, St Joseph, MI:
    • Li, B., Wang, M., & Wang, N. (2010). Development of a real-time fruit recognition system for pineapple harvesting robots. Paper No. 1009510. ASABE, St Joseph, MI
    • (2010) 1009510
    • Li, B.1    Wang, M.2    Wang, N.3
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision,60(2), 91–110.
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 19
    • 33746649575 scopus 로고    scopus 로고
    • Performance evaluation of object detection algorithms for video surveillance
    • Nascimento, J. C., & Marques, J. S. (2006). Performance evaluation of object detection algorithms for video surveillance. IEEE Transactions on Multimedia,8(4), 761–774.
    • (2006) IEEE Transactions on Multimedia , vol.8 , Issue.4 , pp. 761-774
    • Nascimento, J.C.1    Marques, J.S.2
  • 20
    • 84912009318 scopus 로고    scopus 로고
    • Open source computer vision library version 2.3.1, [C source code]. Retrieved December 1, 2013
    • OpenCV Community (2013). Open source computer vision library version 2.3.1, [C source code]. Retrieved December 1, 2013, from http://sourceforge.net/projects/opencvlibrary.
    • (2013) from
  • 22
    • 0031167941 scopus 로고    scopus 로고
    • Matching feature points in image sequences through a region-based method
    • Pla, F., & Marchant, J. A. (1997). Matching feature points in image sequences through a region-based method. Computer Vision and Image Understanding,66(3), 271–285.
    • (1997) Computer Vision and Image Understanding , vol.66 , Issue.3 , pp. 271-285
    • Pla, F.1    Marchant, J.A.2
  • 24
    • 33745824633 scopus 로고    scopus 로고
    • Machine learning for high-speed corner detection
    • Germany: Springer
    • Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In Leonardis, A., Bischof, H., Pinz, A. (Eds.), Proceedings of the European Conference on Computer Vision (pp. 430–443). Heidelberg, Germany: Springer.
    • (2006) Heidelberg
    • Rosten, E.1    Drummond, T.2
  • 25
    • 84856627527 scopus 로고    scopus 로고
    • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2564–2571). New York: IEEE
    • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2564–2571). New York: IEEE.
  • 28
    • 77949513237 scopus 로고    scopus 로고
    • Torii, I., Okada, Y., Mizutani, M., & Ishii, N. (2009). A simple method for 3-dimensional modeling and application to complex objects. In Proceedings of the 21st International Conference on Tools with Artificial Intelligence (pp. 41–48). New York: IEEE
    • Torii, I., Okada, Y., Mizutani, M., & Ishii, N. (2009). A simple method for 3-dimensional modeling and application to complex objects. In Proceedings of the 21st International Conference on Tools with Artificial Intelligence (pp. 41–48). New York: IEEE.
  • 31
    • 84866975208 scopus 로고    scopus 로고
    • Classification of fruits using computer vision and a multiclass support vector machine
    • PID: 23112727
    • Zhang, Y., & Wu, L. (2012). Classification of fruits using computer vision and a multiclass support vector machine. Sensors,12(9), 12489–12505.
    • (2012) Sensors , vol.12 , Issue.9 , pp. 12489-12505
    • Zhang, Y.1    Wu, L.2
  • 33
    • 84866010233 scopus 로고    scopus 로고
    • Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield
    • Zhou, R., Damerow, L., Sun, Y., & Blanke, M. (2012). Using colour features of cv. ‘Gala’ apple fruits in an orchard in image processing to predict yield. Precision Agriculture,13(5), 568–580.
    • (2012) Precision Agriculture , vol.13 , Issue.5 , pp. 568-580
    • Zhou, R.1    Damerow, L.2    Sun, Y.3    Blanke, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.