메뉴 건너뛰기




Volumn , Issue , 2012, Pages 3242-3249

Interactive object detection

Author keywords

[No Author keywords available]

Indexed keywords

ANNOTATION METHODS; COST MODELS; DATA SETS; DETECTING OBJECTS; DIGITAL IMAGE; HUMAN ANNOTATIONS; IMAGE ANNOTATION; INTERACTIVE OBJECTS; LEARNING PERFORMANCE; OBJECT DETECTORS; ON THE FLIES; SINGLE USERS; STILL IMAGES; USER STUDY; VIDEO ANNOTATIONS; VIDEO DATA; WAITING-TIME;

EID: 84866664389     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2012.6248060     Document Type: Conference Paper
Times cited : (87)

References (24)
  • 1
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 79959728283 scopus 로고    scopus 로고
    • Localizing objects while learning their appearance
    • T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In ECCV, 2010.
    • (2010) ECCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 4
    • 77955655063 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, Y.Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. In NIPS, 2009.
    • (2009) NIPS
    • Fergus, R.1    Weiss, Y.2    Torralba, A.3
  • 5
    • 51949088307 scopus 로고    scopus 로고
    • Progressive search space reduction for human pose estimation
    • V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search space reduction for human pose estimation. In CVPR, 2008.
    • (2008) CVPR
    • Ferrari, V.1    Marin-Jimenez, M.2    Zisserman, A.3
  • 7
    • 80053120334 scopus 로고    scopus 로고
    • Hough forests for object detection, tracking, and action recognition
    • J. Gall, A. Yao, N. Razavi, L. van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. PAMI, 33(11):2188-2202, 2011.
    • (2011) PAMI , vol.33 , Issue.11 , pp. 2188-2202
    • Gall, J.1    Yao, A.2    Razavi, N.3    Van Gool, L.4    Lempitsky, V.5
  • 8
    • 70450192673 scopus 로고    scopus 로고
    • Active learning for large multi-class problems
    • P. Jain and A. Kapoor. Active learning for large multi-class problems. In CVPR, 2009.
    • (2009) CVPR
    • Jain, P.1    Kapoor, A.2
  • 9
    • 77956007535 scopus 로고    scopus 로고
    • Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback
    • A. Joshi, F. Porikli, and N. Papanikolopoulos. Breaking the interactive bottleneck in multi-class classification with active selection and binary feedback. In CVPR, 2010.
    • (2010) CVPR
    • Joshi, A.1    Porikli, F.2    Papanikolopoulos, N.3
  • 10
    • 78149322292 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2010.
    • (2010) CVPR
    • Lampert, C.1    Nickisch, H.2    Harmeling, S.3
  • 11
    • 80052880043 scopus 로고    scopus 로고
    • Learning the easy things first: Selfpaced visual category discovery
    • Y. Lee and K. Grauman. Learning the easy things first: Selfpaced visual category discovery. In CVPR, 2011.
    • (2011) CVPR
    • Lee, Y.1    Grauman, K.2
  • 12
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In SIGIR, 1994.
    • (1994) SIGIR
    • Lewis, D.1    Gale, W.2
  • 13
    • 80052890615 scopus 로고    scopus 로고
    • A large-scale benchmark dataset for event recognition in surveillance video
    • S. Oh et al. A large-scale benchmark dataset for event recognition in surveillance video. In CVPR, 2011.
    • (2011) CVPR
    • Oh, S.1
  • 14
  • 15
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In ICML, 2001.
    • (2001) ICML
    • Roy, N.1    McCallum, A.2
  • 16
    • 39749186006 scopus 로고    scopus 로고
    • Labelme: A database and web-based tool for image annotation
    • B. Russell, A. Torralba, K. Murphy, and W. Freeman. Labelme: a database and web-based tool for image annotation. IJCV, 77(1-3), 2008.
    • (2008) IJCV , vol.77 , Issue.1-3
    • Russell, B.1    Torralba, A.2    Murphy, K.3    Freeman, W.4
  • 18
    • 84873124152 scopus 로고    scopus 로고
    • From theories to queries: Active learning in practice
    • B. Settles. From theories to queries: Active learning in practice. In Active Learning and Experimental Design W., pages 1-18. 2011.
    • (2011) Active Learning and Experimental Design W , pp. 1-18
    • Settles, B.1
  • 19
    • 52049123532 scopus 로고    scopus 로고
    • Utility data annotation with amazon mechanical turk
    • A. Sorokin and D. Forsyth. Utility data annotation with amazon mechanical turk. In W. on Internet Vision, 2008.
    • (2008) W. on Internet Vision
    • Sorokin, A.1    Forsyth, D.2
  • 20
    • 79951676953 scopus 로고    scopus 로고
    • Cost-sensitive active visual category learning
    • S. Vijayanarasimhan and K. Grauman. Cost-sensitive active visual category learning. IJCV, 91(1), 2011.
    • (2011) IJCV , vol.91 , pp. 1
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 21
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object detectors with crawled data and crowds. In CVPR, 2011.
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 22
    • 85162335218 scopus 로고    scopus 로고
    • Video annotation and tracking with active learning
    • C. Vondrick and D. Ramanan. Video annotation and tracking with active learning. In NIPS, 2011.
    • (2011) NIPS
    • Vondrick, C.1    Ramanan, D.2
  • 23
    • 80052914920 scopus 로고    scopus 로고
    • Efficient video annotation with crowdsourced markets
    • C. Vondrick, D. Ramanan, and D. Patterson. Efficient video annotation with crowdsourced markets. In ECCV, 2010.
    • (2010) ECCV
    • Vondrick, C.1    Ramanan, D.2    Patterson, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.