메뉴 건너뛰기




Volumn 112, Issue 1, 2015, Pages 120-128

A synthetic O2-tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli

Author keywords

Biofuel; Butanol; Escherichia coli; Fatty acid biosynthesis; Synthetic pathway

Indexed keywords

ALDEHYDES; BIOCHEMISTRY; BIOFUELS; BIOSYNTHESIS; BUTENES; CLOSTRIDIUM; ENZYME ACTIVITY; ESCHERICHIA COLI; PLANTS (BOTANY);

EID: 84911443214     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.25324     Document Type: Article
Times cited : (21)

References (41)
  • 1
    • 78149414134 scopus 로고    scopus 로고
    • Microalgae as a sustainable energy source for biodiesel production: A review
    • Ahmad AL, Yasin NHM, Derek CJC, Lim JK. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renew Sustain Energ Rev 15(1):584-593.
    • (2011) Renew Sustain Energ Rev , vol.15 , Issue.1 , pp. 584-593
    • Ahmad, A.L.1    Yasin, N.H.M.2    Derek, C.J.C.3    Lim, J.K.4
  • 2
    • 84871952399 scopus 로고    scopus 로고
    • Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities
    • Akhtar MK, Turner NJ, Jones PR. 2013. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 110(1):87-92.
    • (2013) Proc Natl Acad Sci , vol.110 , Issue.1 , pp. 87-92
    • Akhtar, M.K.1    Turner, N.J.2    Jones, P.R.3
  • 4
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts BB, Bellerose RJ, Chang MC. 2011. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222-227.
    • (2011) Nat Chem Biol , vol.7 , Issue.4 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.3
  • 5
    • 84869014233 scopus 로고    scopus 로고
    • Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway
    • Cooksley CM, Zhang Y, Wang H, Redl S, Winzer K, Minton NP. 2012. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14(6):630-641.
    • (2012) Metab Eng , vol.14 , Issue.6 , pp. 630-641
    • Cooksley, C.M.1    Zhang, Y.2    Wang, H.3    Redl, S.4    Winzer, K.5    Minton, N.P.6
  • 6
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. 2011. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355-359.
    • (2011) Nature , vol.476 , Issue.7360 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 9
    • 85028099195 scopus 로고    scopus 로고
    • Gurobi Optimization I. . Gurobi Optimizer Reference Manual.
    • Gurobi Optimization I. 2013. Gurobi Optimizer Reference Manual.
    • (2013)
  • 10
  • 12
    • 80051782239 scopus 로고    scopus 로고
    • Progress in the production and application of n-butanol as a biofuel
    • Jin C, Yao M, Liu H, Lee C-fF, Ji J. 2011. Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energ Rev 15(8):4080-4106.
    • (2011) Renew Sustain Energ Rev , vol.15 , Issue.8 , pp. 4080-4106
    • Jin, C.1    Yao, M.2    Liu, H.3    Lee, C.-F.4    Ji, J.5
  • 13
    • 81155158878 scopus 로고    scopus 로고
    • Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity
    • Jing F, Cantu DC, Tvaruzkova J, Chipman JP, Nikolau BJ, Yandeau-Nelson MD, Reilly PJ. 2011. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity. BMC Biochem 12(44):1-16.
    • (2011) BMC Biochem , vol.12 , Issue.44 , pp. 1-16
    • Jing, F.1    Cantu, D.C.2    Tvaruzkova, J.3    Chipman, J.P.4    Nikolau, B.J.5    Yandeau-Nelson, M.D.6    Reilly, P.J.7
  • 14
    • 0022970603 scopus 로고
    • Acetone-butanol fermentation revisited
    • Jones DT, Woods DR. 1986. Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484-524.
    • (1986) Microbiol Rev , vol.50 , Issue.4 , pp. 484-524
    • Jones, D.T.1    Woods, D.R.2
  • 15
    • 85028098451 scopus 로고    scopus 로고
    • Renewable propane-Microbial biosynthesis and separation of an engine-ready hydrocarbon fuel
    • In Press
    • Kallio P, Pásztor A, Thiel K, Akhtar MK, Jones PR. 2014. Renewable propane-Microbial biosynthesis and separation of an engine-ready hydrocarbon fuel. Nat Commun (In Press).
    • (2014) Nat Commun
    • Kallio, P.1    Pásztor, A.2    Thiel, K.3    Akhtar, M.K.4    Jones, P.R.5
  • 16
    • 79958747820 scopus 로고    scopus 로고
    • Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide
    • Lan EI, Liao JC. 2011. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353-363.
    • (2011) Metab Eng , vol.13 , Issue.4 , pp. 353-363
    • Lan, E.I.1    Liao, J.C.2
  • 17
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci USA 109(16):6018-6023.
    • (2012) Proc Natl Acad Sci USA , vol.109 , Issue.16 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 18
    • 84882392453 scopus 로고    scopus 로고
    • Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria
    • Lan EI, Ro SY, Liao JC. 2013. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy Environ Sci 6(9):2672-2681.
    • (2013) Energy Environ Sci , vol.6 , Issue.9 , pp. 2672-2681
    • Lan, E.I.1    Ro, S.Y.2    Liao, J.C.3
  • 20
    • 84871434713 scopus 로고    scopus 로고
    • Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption
    • Liu D, Chen Y, Li A, Ding F, Zhou T, He Y, Li B, Niu H, Lin X, Xie J., et al. 2013. Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresour Technol 129(0):321-328.
    • (2013) Bioresour Technol , vol.129 , Issue.0 , pp. 321-328
    • Liu, D.1    Chen, Y.2    Li, A.3    Ding, F.4    Zhou, T.5    He, Y.6    Li, B.7    Niu, H.8    Lin, X.9    Xie, J.10
  • 22
    • 57049105699 scopus 로고    scopus 로고
    • Overproduction of free fatty acids in E. coli: Implications for biodiesel production
    • Lu X, Vora H, Khosla C. 2008. Overproduction of free fatty acids in E. coli: Implications for biodiesel production. Eng Metab Pathways Biofuels Prod 10(6):333-339.
    • (2008) Eng Metab Pathways Biofuels Prod , vol.10 , Issue.6 , pp. 333-339
    • Lu, X.1    Vora, H.2    Khosla, C.3
  • 23
    • 0036708443 scopus 로고    scopus 로고
    • Dynamic flux balance analysis of diauxic growth in Escherichia coli
    • Mahadevan R, Edwards JS, Doyle FJ 3rd. 2002. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331-1340.
    • (2002) Biophys J , vol.83 , Issue.3 , pp. 1331-1340
    • Mahadevan, R.1    Edwards, J.S.2    Doyle, F.J.3
  • 25
    • 85028123558 scopus 로고
    • New York: Van Nostrand Reinhold
    • Mellan I. 1950. Industrial solvents, New York: Van Nostrand Reinhold. Vol. 1: p 482-488.
    • (1950) Industrial solvents , vol.1 , pp. 482-488
    • Mellan, I.1
  • 26
    • 84873596341 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs
    • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31(2):170-174.
    • (2013) Nat Biotechnol , vol.31 , Issue.2 , pp. 170-174
    • Na, D.1    Yoo, S.M.2    Chung, H.3    Park, H.4    Park, J.H.5    Lee, S.Y.6
  • 27
    • 84862601628 scopus 로고    scopus 로고
    • Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity
    • 90-2859-11-90.
    • Rodriguez GM, Atsumi S. 2012. Isobutyraldehyde production from Escherichia coli by removing aldehyde reductase activity. Microb Cell Factories 11: 90-2859-11-90.
    • (2012) Microb Cell Factories , vol.11
    • Rodriguez, G.M.1    Atsumi, S.2
  • 30
    • 79955611425 scopus 로고    scopus 로고
    • Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli
    • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. 2011. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905-2915.
    • (2011) Appl Environ Microbiol , vol.77 , Issue.9 , pp. 2905-2915
    • Shen, C.R.1    Lan, E.I.2    Dekishima, Y.3    Baez, A.4    Cho, K.M.5    Liao, J.C.6
  • 31
    • 57049169148 scopus 로고    scopus 로고
    • Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance
    • Sillers R, Chow A, Tracy B, Papoutsakis ET. 2008. Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Eng Metab Pathways Biofuels Prod 10(6):321-332.
    • (2008) Eng Metab Pathways Biofuels Prod , vol.10 , Issue.6 , pp. 321-332
    • Sillers, R.1    Chow, A.2    Tracy, B.3    Papoutsakis, E.T.4
  • 34
    • 0028146781 scopus 로고
    • Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110
    • Varma A, Palsson BO. 1994. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60(10):3724-3731.
    • (1994) Appl Environ Microbiol , vol.60 , Issue.10 , pp. 3724-3731
    • Varma, A.1    Palsson, B.O.2
  • 35
    • 84873812835 scopus 로고    scopus 로고
    • Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production
    • Varman AM, Xiao Y, Pakrasi HB, Tang YJ. 2013. Metabolic engineering of Synechocystis sp. strain PCC 6803 for isobutanol production. Appl Environ Microbiol 79(3):908-914.
    • (2013) Appl Environ Microbiol , vol.79 , Issue.3 , pp. 908-914
    • Varman, A.M.1    Xiao, Y.2    Pakrasi, H.B.3    Tang, Y.J.4
  • 36
    • 67649388222 scopus 로고    scopus 로고
    • Characterization of an alcohol dehydrogenase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system
    • Vidal R, López-Maury L, Guerrero MG, Florencio FJ. 2009. Characterization of an alcohol dehydrogenase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 that responds to environmental stress conditions via the Hik34-Rre1 two-component system. J Bacteriol 191(13):4383-4391.
    • (2009) J Bacteriol , vol.191 , Issue.13 , pp. 4383-4391
    • Vidal, R.1    López-Maury, L.2    Guerrero, M.G.3    Florencio, F.J.4
  • 37
    • 79958709458 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium tyrobutyricum for n-butanol production
    • Yu M, Zhang Y, Tang IC, Yang S-T. 2011. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13(4):373-382.
    • (2011) Metab Eng , vol.13 , Issue.4 , pp. 373-382
    • Yu, M.1    Zhang, Y.2    Tang, I.C.3    Yang, S.-T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.