메뉴 건너뛰기




Volumn 31, Issue 11, 2009, Pages 2093-2098

FINE: Fisher information nonparametric embedding

Author keywords

Dimensionality reduction; Information geometry; Multidimensional scaling; Statistical manifold

Indexed keywords

BIOMEDICAL APPLICATIONS; CLASSIFICATION ,; DATA SETS; DIMENSIONALITY REDUCTION; DOCUMENT CLASSIFICATION; EFFECTIVE LEARNING; EUCLIDEAN; EUCLIDEAN SPACES; FISHER INFORMATION; HIGH DIMENSIONAL DATA; INFORMATION GEOMETRY; MULTI-DIMENSIONAL SCALING METHODS; MULTIDIMENSIONAL SCALING; NON-PARAMETRIC; NONPARAMETRIC METHODS; PRACTICAL PROBLEMS; STATISTICAL MANIFOLD; STATISTICAL MANIFOLDS;

EID: 70349878941     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2009.67     Document Type: Article
Times cited : (74)

References (20)
  • 1
    • 21844459752 scopus 로고    scopus 로고
    • Diffusion Kernels on Statistical Manifolds
    • Jan
    • J. Lafferty and G. Lebanon, "Diffusion Kernels on Statistical Manifolds," J. Machine Learning Research, vol. 6, pp. 129-163, Jan. 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 129-163
    • Lafferty, J.1    Lebanon, G.2
  • 6
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, eds, MIT Press
    • M. Belkin and P. Niyogi, "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering," Advances in Neural Information Processing Systems, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds., vol. 14, MIT Press, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Belkin, M.1    Niyogi, P.2
  • 7
    • 0034704229 scopus 로고    scopus 로고
    • A Global Geometric Framework for Nonlinear Dimensionality Reduction
    • J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 8
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • S. Roweis and L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, no. 1, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , Issue.1 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 12
    • 33645988196 scopus 로고    scopus 로고
    • From Sample Similarity to Ensemble Similarity: Probabilistic Distance Measures in Reproducing Kernel Hilbert Space
    • June
    • S.K. Zhou and R. Chellappa, "From Sample Similarity to Ensemble Similarity: Probabilistic Distance Measures in Reproducing Kernel Hilbert Space," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 6, pp. 917-929, June 2006.
    • (2006) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.28 , Issue.6 , pp. 917-929
    • Zhou, S.K.1    Chellappa, R.2
  • 13
    • 70349874641 scopus 로고    scopus 로고
    • Dimensionality Reduction on Statistical Manifolds,
    • PhD thesis, Univ. of Michigan, Jan
    • K.M. Carter, "Dimensionality Reduction on Statistical Manifolds," PhD thesis, Univ. of Michigan, Jan. 2009.
    • (2009)
    • Carter, K.M.1
  • 15
    • 62349119227 scopus 로고    scopus 로고
    • K.M. Carter, R. Raich, W.G. Finn, and A.O. Hero, Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis, IEEE J. Selected Topics in Signal Processing, special issue on digital image processing techniques for oncology, 3, no. 1, pp. 148-158, Feb. 2009.
    • K.M. Carter, R. Raich, W.G. Finn, and A.O. Hero, "Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis," IEEE J. Selected Topics in Signal Processing, special issue on digital image processing techniques for oncology, vol. 3, no. 1, pp. 148-158, Feb. 2009.
  • 16
    • 62349137000 scopus 로고    scopus 로고
    • Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects
    • Jan
    • W.G. Finn, K.M. Carter, R. Raich, and A.O. Hero, "Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects," Cytometry Part B: Clinical Cytometry, vol. 76B, no. 1, pp. 1-7, Jan. 2009.
    • (2009) Cytometry Part B: Clinical Cytometry , vol.76 B , Issue.1 , pp. 1-7
    • Finn, W.G.1    Carter, K.M.2    Raich, R.3    Hero, A.O.4
  • 17
    • 0001438056 scopus 로고
    • The Maximal Smoothing Principle in Density Estimation
    • June
    • G. Terrell, "The Maximal Smoothing Principle in Density Estimation," J. Am. Statistical Assoc., vol. 85, no. 410, pp. 470-477, June 1990.
    • (1990) J. Am. Statistical Assoc , vol.85 , Issue.410 , pp. 470-477
    • Terrell, G.1
  • 18
    • 21844475661 scopus 로고    scopus 로고
    • Dimension Reduction in Text Classification with Support Vector Machines
    • Jan
    • H. Kim, P. Howland, and H. Park, "Dimension Reduction in Text Classification with Support Vector Machines," J. Machine Learning Research, vol. 6, pp. 37-53, Jan. 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 37-53
    • Kim, H.1    Howland, P.2    Park, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.