-
1
-
-
36148960076
-
Metastasis of squamous cell carcinoma of the oral tongue
-
Sano D, Myers JN. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev 2007; 26: 645-62.
-
(2007)
Cancer Metastasis Rev
, vol.26
, pp. 645-662
-
-
Sano, D.1
Myers, J.N.2
-
3
-
-
84886100472
-
Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer
-
Yamada S, Fuchs BC, Fujii T et al. Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery 2013; 154: 946-54.
-
(2013)
Surgery
, vol.154
, pp. 946-954
-
-
Yamada, S.1
Fuchs, B.C.2
Fujii, T.3
-
4
-
-
84886912773
-
MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro
-
Moon HJ, Finney J, Xu L, Moore D, Welch DR, Mure M. MCF-7 cells expressing nuclear associated lysyl oxidase-like 2 (LOXL2) exhibit an epithelial-to-mesenchymal transition (EMT) phenotype and are highly invasive in vitro. J Biol Chem 2013; 288: 30000-8.
-
(2013)
J Biol Chem
, vol.288
, pp. 30000-30008
-
-
Moon, H.J.1
Finney, J.2
Xu, L.3
Moore, D.4
Welch, D.R.5
Mure, M.6
-
5
-
-
84885079983
-
FGFR4 promotes stroma-induced epithelial-to- mesenchymal transition in colorectal cancer
-
Liu R, Li J, Xie K et al. FGFR4 promotes stroma-induced epithelial-to- mesenchymal transition in colorectal cancer. Cancer Res 2013; 73: 5926-35.
-
(2013)
Cancer Res
, vol.73
, pp. 5926-5935
-
-
Liu, R.1
Li, J.2
Xie, K.3
-
6
-
-
84875878248
-
miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells
-
Chen Y, Xiao Y, Ge W et al. miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells. Cell Death Dis 2013; 4: e541.
-
(2013)
Cell Death Dis
, vol.4
, pp. e541
-
-
Chen, Y.1
Xiao, Y.2
Ge, W.3
-
7
-
-
24644480749
-
Molecular requirements for epithelial-mesenchymal transition during tumor progression
-
Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548-58.
-
(2005)
Curr Opin Cell Biol
, vol.17
, pp. 548-558
-
-
Huber, M.A.1
Kraut, N.2
Beug, H.3
-
8
-
-
77649261101
-
TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI
-
Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-β-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol 2010; 12: 286-93.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 286-293
-
-
Chaudhury, A.1
Hussey, G.S.2
Ray, P.S.3
Jin, G.4
Fox, P.L.5
Howe, P.H.6
-
9
-
-
67650999875
-
The basics of epithelial-mesenchymal transition
-
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420-8.
-
(2009)
J Clin Invest
, vol.119
, pp. 1420-1428
-
-
Kalluri, R.1
Weinberg, R.A.2
-
10
-
-
77956272475
-
Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition
-
Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH. Functional roles of multiple feedback loops in extracellular signal-regulated kinase and Wnt signaling pathways that regulate epithelial-mesenchymal transition. Cancer Res 2010; 70: 6715-24.
-
(2010)
Cancer Res
, vol.70
, pp. 6715-6724
-
-
Shin, S.Y.1
Rath, O.2
Zebisch, A.3
Choo, S.M.4
Kolch, W.5
Cho, K.H.6
-
11
-
-
70450198396
-
Epithelial-mesenchymal transitions in development and disease
-
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871-90.
-
(2009)
Cell
, vol.139
, pp. 871-890
-
-
Thiery, J.P.1
Acloque, H.2
Huang, R.Y.J.3
Nieto, M.A.4
-
12
-
-
4344612243
-
NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression
-
Huber MAAN, Baumann B, Grünert S et al. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 2004; 114: 569-81.
-
(2004)
J Clin Invest
, vol.114
, pp. 569-581
-
-
Huber, M.A.A.N.1
Baumann, B.2
Grünert, S.3
-
13
-
-
60649089997
-
Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells
-
Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009; 15: 195-206.
-
(2009)
Cancer Cell
, vol.15
, pp. 195-206
-
-
Kudo-Saito, C.1
Shirako, H.2
Takeuchi, T.3
Kawakami, Y.4
-
14
-
-
77953743748
-
ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1
-
Sánchez-Tilló E, Lázaro A, Torrent R et al. ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene 2010; 29: 3490-500.
-
(2010)
Oncogene
, vol.29
, pp. 3490-3500
-
-
Sánchez-Tilló, E.1
Lázaro, A.2
Torrent, R.3
-
15
-
-
79953060389
-
Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer
-
Vuoriluoto K, Haugen H, Kiviluoto S et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 2010; 30: 1436-48.
-
(2010)
Oncogene
, vol.30
, pp. 1436-1448
-
-
Vuoriluoto, K.1
Haugen, H.2
Kiviluoto, S.3
-
16
-
-
73049110243
-
The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs
-
Wellner U, Schubert J, Burk UC et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487-95.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1487-1495
-
-
Wellner, U.1
Schubert, J.2
Burk, U.C.3
-
17
-
-
65349092794
-
Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion
-
Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of Snail by NF-κB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009; 15: 416-28.
-
(2009)
Cancer Cell
, vol.15
, pp. 416-428
-
-
Wu, Y.1
Deng, J.2
Rychahou, P.G.3
Qiu, S.4
Evers, B.M.5
Zhou, B.P.6
-
18
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
19
-
-
33749537080
-
Principles and effects of microRNA-mediated post-transcriptional gene regulation
-
Engel BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 2006; 25: 6163-9.
-
(2006)
Oncogene
, vol.25
, pp. 6163-6169
-
-
Engel, B.M.1
Hutvagner, G.2
-
20
-
-
33645321647
-
MicroRNAs in cell proliferation, cell death, and tumorigenesis
-
Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94: 776-80.
-
(2006)
Br J Cancer
, vol.94
, pp. 776-780
-
-
Hwang, H.W.1
Mendell, J.T.2
-
21
-
-
84856222156
-
MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1
-
Sun L, Yao Y, Liu B et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene 2012; 31: 432-45.
-
(2012)
Oncogene
, vol.31
, pp. 432-445
-
-
Sun, L.1
Yao, Y.2
Liu, B.3
-
22
-
-
84856221154
-
FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells
-
Du J, Li L, Ou Z et al. FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat 2012; 131: 65-73.
-
(2012)
Breast Cancer Res Treat
, vol.131
, pp. 65-73
-
-
Du, J.1
Li, L.2
Ou, Z.3
-
23
-
-
84867500111
-
FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition
-
Xu ZY, Ding SM, Zhou L et al. FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition. Int J Biol Sci 2012; 8: 1130-41.
-
(2012)
Int J Biol Sci
, vol.8
, pp. 1130-1141
-
-
Xu, Z.Y.1
Ding, S.M.2
Zhou, L.3
-
24
-
-
84877146681
-
High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients
-
Wei LX, Zhou RS, Xu HF, Wang JY, Yuan MH. High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients. Tumour Biol 2013; 34: 941-6.
-
(2013)
Tumour Biol
, vol.34
, pp. 941-946
-
-
Wei, L.X.1
Zhou, R.S.2
Xu, H.F.3
Wang, J.Y.4
Yuan, M.H.5
-
25
-
-
84877127360
-
High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma
-
Wang L, Gu F, Liu CY, Wang RJ, Li J, Xu JY. High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2013; 34: 853-8.
-
(2013)
Tumour Biol
, vol.34
, pp. 853-858
-
-
Wang, L.1
Gu, F.2
Liu, C.Y.3
Wang, R.J.4
Li, J.5
Xu, J.Y.6
-
26
-
-
84873316241
-
Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma
-
Xia L, Huang W, Tian D et al. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 2013; 57: 610-24.
-
(2013)
Hepatology
, vol.57
, pp. 610-624
-
-
Xia, L.1
Huang, W.2
Tian, D.3
-
27
-
-
0036429459
-
Identification of FOXC1 as a TGF-beta1 responsive gene and its involvement in negative regulation of cell growth
-
Zhou Y, Kato H, Asanoma K et al. Identification of FOXC1 as a TGF-beta1 responsive gene and its involvement in negative regulation of cell growth. Genomics 2002; 80: 465-72.
-
(2002)
Genomics
, vol.80
, pp. 465-472
-
-
Zhou, Y.1
Kato, H.2
Asanoma, K.3
-
28
-
-
52349083651
-
Serum microRNAs are promising novel biomarkers
-
Gilad S, Meiri E, Yogev Y et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008; 3: e3148.
-
(2008)
PLoS ONE
, vol.3
, pp. e3148
-
-
Gilad, S.1
Meiri, E.2
Yogev, Y.3
-
29
-
-
47049108537
-
Targeted therapies in control of EMT in carcinoma and fibrosis
-
Chua KN, Ma J, Thiery JP. Targeted therapies in control of EMT in carcinoma and fibrosis. Drug Discov Today 2008; 4: 261-7.
-
(2008)
Drug Discov Today
, vol.4
, pp. 261-267
-
-
Chua, K.N.1
Ma, J.2
Thiery, J.P.3
-
30
-
-
33846998990
-
Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas
-
Shida T, Furuya M, Nikaido T et al. Sonic Hedgehog-Gli1 signaling pathway might become an effective therapeutic target in gastrointestinal neuroendocrine carcinomas. Cancer Biol Ther 2006; 5: 1530-8.
-
(2006)
Cancer Biol Ther
, vol.5
, pp. 1530-1538
-
-
Shida, T.1
Furuya, M.2
Nikaido, T.3
-
31
-
-
33947254016
-
Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers
-
Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007; 67: 2187-96.
-
(2007)
Cancer Res
, vol.67
, pp. 2187-2196
-
-
Feldmann, G.1
Dhara, S.2
Fendrich, V.3
Bedja, D.4
Beaty, R.5
Mullendore, M.6
-
32
-
-
28444469246
-
Silencing of microRNAs in vivo with 'antagomirs'
-
Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438: 685-9.
-
(2005)
Nature
, vol.438
, pp. 685-689
-
-
Krutzfeldt, J.1
Rajewsky, N.2
Braich, R.3
-
34
-
-
59449084015
-
TGF-β induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1
-
Spender LC, Inman GJ. TGF-β induces growth arrest in Burkitt lymphoma cells via transcriptional repression of E2F-1. J Biol Chem 2009; 284: 1435-42.
-
(2009)
J Biol Chem
, vol.284
, pp. 1435-1442
-
-
Spender, L.C.1
Inman, G.J.2
-
35
-
-
39849095077
-
E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer
-
Petrocca F, Visone R, Onelli MR et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008; 13: 272-86.
-
(2008)
Cancer Cell
, vol.13
, pp. 272-286
-
-
Petrocca, F.1
Visone, R.2
Onelli, M.R.3
|