-
1
-
-
0032762471
-
A statistical model-based voice activity detection
-
J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based voice activity detection,” IEEE Signal Process. Lett., vol. 6, no. 1, pp. 1–3, 1999.
-
(1999)
IEEE Signal Process. Lett.
, vol.6
, Issue.1
, pp. 1-3
-
-
Sohn, J.1
Kim, N.S.2
Sung, W.3
-
2
-
-
0035481845
-
Analysis and improvement of a statistical model-based voice activity detector
-
Y. D. Cho and A. Kondoz, “Analysis and improvement of a statistical model-based voice activity detector,” IEEE Signal Process. Lett., vol. 8, no. 10, pp. 276–278, 2001.
-
(2001)
IEEE Signal Process. Lett.
, vol.8
, Issue.10
, pp. 276-278
-
-
Cho, Y.D.1
Kondoz, A.2
-
3
-
-
67650137747
-
Discriminative weighttraining for a statistical model-based voice activity detection
-
S. -I. Kang, Q. -H. Jo, and J. -H. Chang, “Discriminative weighttraining for a statistical model-based voice activity detection,” IEEE Signal Process. Lett., vol. 15, pp. 170–173, 2008.
-
(2008)
IEEE Signal Process. Lett.
, vol.15
, pp. 170-173
-
-
Kang, S.-I.1
Jo, Q.-H.2
Chang, J.-H.3
-
4
-
-
79959826332
-
A Bayesian approach to voice activity detection using multiple statistical models and discriminative training
-
T. Yu and J. H. L. Hansen, “A Bayesian approach to voice activity detection using multiple statistical models and discriminative training,” in Proc. INTERSPEECH, 2010, pp. 3114–3117.
-
(2010)
Proc. INTERSPEECH
, pp. 3114-3117
-
-
Yu, T.1
Hansen, J.H.L.2
-
5
-
-
77954564049
-
Voice activity detection based on discriminative weight training incorporating a spectral flatness measure
-
S. -I. Kang and J. -H. Chang, “Voice activity detection based on discriminative weight training incorporating a spectral flatness measure,” Circuits Syst. Signal Process., vol. 29, pp. 183–194, 2010.
-
(2010)
Circuits Syst. Signal Process.
, vol.29
, pp. 183-194
-
-
Kang, S.-I.1
Chang, J.-H.2
-
6
-
-
0021645331
-
Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator
-
Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp. 1121–1190, 1984.
-
(1984)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.ASSP-32
, Issue.6
, pp. 1121-1190
-
-
Ephraim, Y.1
Malah, D.2
-
7
-
-
0026982122
-
Discriminative learning for minimum error classification
-
B. -H. Juang and S. Katagiri, “Discriminative learning for minimum error classification,” IEEE Trans. Signal Process., vol. 40, no. 12, pp. 3043–3054, 1992.
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.12
, pp. 3043-3054
-
-
Juang, B.-H.1
Katagiri, S.2
-
8
-
-
23344452899
-
Statistical voice activity detection using a multiple observation likelihood ratio test
-
J. Ramírez, J. Segura, C. Benítez, L. García, and A. Rubio, “Statistical voice activity detection using a multiple observation likelihood ratio test,” IEEE Signal Process. Lett., vol. 12, no. 10, pp. 689–692, 2005.
-
(2005)
IEEE Signal Process. Lett.
, vol.12
, Issue.10
, pp. 689-692
-
-
Ramírez, J.1
Segura, J.2
Benítez, C.3
García, L.4
Rubio, A.5
-
9
-
-
77956289831
-
Discriminative training for multiple observation likelihood ratio based voice activity detection
-
T. Yu and J. H. L. Hansen, “Discriminative training for multiple observation likelihood ratio based voice activity detection,” IEEE Signal Process. Lett., vol. 17, no. 11, pp. 897–900, 2010.
-
(2010)
IEEE Signal Process. Lett.
, vol.17
, Issue.11
, pp. 897-900
-
-
Yu, T.1
Hansen, J.H.L.2
-
11
-
-
0036226165
-
Noise estimation by minima controlled recursive averaging forrobust speech enhancement
-
I. Cohen, “Noise estimation by minima controlled recursive averaging forrobust speech enhancement,” IEEE Signal Process. Lett., vol. 9, no. 1, pp. 12–15, 2002.
-
(2002)
IEEE Signal Process. Lett.
, vol.9
, Issue.1
, pp. 12-15
-
-
Cohen, I.1
|