-
1
-
-
0031105739
-
Neural networks in remote sensing
-
P. M. Atkinson, A. R. L. Tatnall, Neural networks in remote sensing, Int. J. Remote Sens. 18 (4), 699, 1997
-
(1997)
Int. J. Remote Sens
, vol.18
, Issue.4
, pp. 699
-
-
Atkinson, P.M.1
Tatnall, A.R.L.2
-
2
-
-
84858776353
-
A new pruning algorithm for feedforward neural networks
-
IEEE Conference Publication, Wuhan, Hubei, China 19-21 October
-
A. Fangju, A New Pruning Algorithm for Feedforward Neural Networks, Fourth International Workshop on Advanced Computational Intelligence, IEEE Conference Publication, Wuhan, Hubei, China 19-21 October 2011, 286-289
-
(2011)
Fourth International Workshop on Advanced Computational Intelligence
, pp. 286-289
-
-
Fangju, A.1
-
3
-
-
73949154686
-
3. OP-elm: Optimally pruned extreme learning machine
-
A. Yoan, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, 3. OP-ELM: optimally pruned extreme learning machine, IEEE Trans. Neural Networks 21 (1), 158-162, 2010
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.1
, pp. 158-162
-
-
Yoan, A.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
4
-
-
51549113917
-
A novel algorithm for designing three layered artificial neural networks
-
S. Ahmmed, K. Abdullah-Al-Mamun, M. Islam, A novel algorithm for designing three layered artificial neural networks, Int. J. Soft. Comput. 2 (3), 450-458, 2007
-
(2007)
Int. J. Soft. Comput
, vol.2
, Issue.3
, pp. 450-458
-
-
Ahmmed, S.1
Abdullah-Al-Mamun, K.2
Islam, M.3
-
5
-
-
65249163364
-
An incremental framework based on cross validation for estimating the architecture of a multilayer perceptron
-
O. Aran, O. T. Yildiz, E. Alpaydin, An incremental framework based on cross validation for estimating the architecture of a multilayer perceptron, Int. J. Pttern. Recogn. Artif. Intell. 23 (2), 159-190, 2009
-
(2009)
Int. J. Pttern. Recogn. Artif. Intell
, vol.23
, Issue.2
, pp. 159-190
-
-
Aran, O.1
Yildiz, O.T.2
Alpaydin, E.3
-
6
-
-
33750378348
-
A new training and pruning algorithm based on node dependence and Jacobian rank deficiency
-
J. Xua, D. W. C. Hob, A new training and pruning algorithm based on node dependence and Jacobian rank deficiency, Neurocomputing 70, 544-558, 2006
-
(2006)
Neurocomputing
, vol.70
, pp. 544-558
-
-
Xua, J.1
Hob, D.W.C.2
-
7
-
-
56549091450
-
Solving local minima problem with large number of hidden nodes on two layered feedforward artificial neural networks
-
B. Choi, J. HongLee, D.-H. Kim, Solving local minima problem with large number of hidden nodes on two layered feedforward artificial neural networks, Neurocomputing 71, 3640-3643, 2008
-
(2008)
Neurocomputing
, vol.71
, pp. 3640-3643
-
-
Choi, B.1
Lee, J.H.2
Kim, D.-H.3
-
8
-
-
56349131357
-
A new pruning algorithm for neural network dimension analysis
-
Hong Kong, 1-8 June
-
D. Sabo, X.-H. Yu, A new pruning algorithm for neural network dimension analysis, IJCNN 2008, IEEE World Congress on Computational Intelligence, In Proc. of IEEE Int. Joint Conference on Neural Networks, Hong Kong, 1-8 June 2008, 3313-3318
-
(2008)
IJCNN 2008, IEEE World Congress on Computational Intelligence, in Proc. of IEEE Int. Joint Conference on Neural Networks
, pp. 3313-3318
-
-
Sabo, D.1
Yu, X.-H.2
-
9
-
-
0027662338
-
Pruning algorithms a survey
-
R. Reed, Pruning algorithms a survey, IEEE T. Neural Networ. 4 (5), 740-747, 1993
-
(1993)
IEEE T. Neural Networ
, vol.4
, Issue.5
, pp. 740-747
-
-
Reed, R.1
-
10
-
-
0002801650
-
Understanding neural networks via rule extraction
-
Montreal, Canada, August 20-25
-
R. Setiono, H. Liu, Understanding Neural Networks via Rule Extraction, In: Proc. of 14th International Joint Conference on Artificial Intelligence, Montreal, Canada, August 20-25 1995, 480-485
-
(1995)
Proc. of 14th International Joint Conference on Artificial Intelligence
, pp. 480-485
-
-
Setiono, R.1
Liu, H.2
-
11
-
-
0027668417
-
Determining and improving the fault tolerance of multi layer perceptrons in a pattern-recognition application
-
M. D. Emmerson, R. I. Damper, Determining and improving the fault tolerance of multi layer perceptrons in a pattern-recognition application, IEEE T. Neural Networ. 4, 788-793, 1993
-
(1993)
IEEE T. Neural Networ
, vol.4
, pp. 788-793
-
-
Emmerson, M.D.1
Damper, R.I.2
-
13
-
-
50849098868
-
A note on knowledge discovery using neural networks and its application to credit card screening
-
R. Setiono, B. Baesens, C. Mues, A note on knowledge discovery using neural networks and its application to credit card screening, Eur. J. Oper. Res. 192 (1), 326-332, 2008
-
(2008)
Eur. J. Oper. Res
, vol.192
, Issue.1
, pp. 326-332
-
-
Setiono, R.1
Baesens, B.2
Mues, C.3
-
14
-
-
84861794233
-
Reverse engineering the neural networks for rule extraction in classification problems
-
M. G. Augasta, T. Kathirvalavakumar, Reverse Engineering the Neural Networks for Rule Extraction in Classification Problems, Neural Process. Lett. 35, 131-150, 2012
-
(2012)
Neural Process. Lett
, vol.35
, pp. 131-150
-
-
Augasta, M.G.1
Kathirvalavakumar, T.2
-
15
-
-
0035505658
-
A new pruning heuristic based on variance analysis of sensitivity information
-
A. P. Engelbrecht, A new pruning heuristic based on variance analysis of sensitivity information, IEEE T. Neural Networ. 12 (6), 1386-1399, 2001
-
(2001)
IEEE T. Neural Networ
, vol.12
, Issue.6
, pp. 1386-1399
-
-
Engelbrecht, A.P.1
-
16
-
-
33745937122
-
Effective neural network pruning using cross validation
-
Montreal, 31 July-4 August
-
T. Q. Huynh, R. Setiono, Effective neural network pruning using cross validation, In: Proc. of IEEE Int. Joint Conference on Neural Networks 2, Montreal, 31 July-4 August 2005, 972-977
-
(2005)
Proc. of IEEE Int. Joint Conference on Neural Networks
, vol.2
, pp. 972-977
-
-
Huynh, T.Q.1
Setiono, R.2
-
17
-
-
0031142667
-
An Iterative Pruning algoritm for feedforward neural networks
-
G. Castellano, A. M. Fanelli, M. Pelillo, An Iterative Pruning algoritm for feedforward neural networks, IEEE T Neural Networ. 8 (3), 519-530, 1997
-
(1997)
IEEE T Neural Networ
, vol.8
, Issue.3
, pp. 519-530
-
-
Castellano, G.1
Fanelli, A.M.2
Pelillo, M.3
-
18
-
-
0036789790
-
A self organizing network that grows when required
-
S. Marsland, S. U. Nehmzow, J. Shapiro, A self organizing network that grows when required, Neural Networ. 15 (809), 1041-1058, 2002
-
(2002)
Neural Networ
, vol.15
, Issue.809
, pp. 1041-1058
-
-
Marsland, S.1
Nehmzow, S.U.2
Shapiro, J.3
-
19
-
-
84867839878
-
Universal approximation of extreme learning machine with adaptive growth of hidden nodes
-
R. Zhang, Y. Lan, G. B. Huang, Z. B. Xu, Universal approximation of extreme learning machine with adaptive growth of hidden nodes, IEEE T. Neural Networ. Learn. Syst. 23 (2), 365-371, 2012
-
(2012)
IEEE T. Neural Networ. Learn. Syst
, vol.23
, Issue.2
, pp. 365-371
-
-
Zhang, R.1
Lan, Y.2
Huang, G.B.3
Xu, Z.B.4
-
20
-
-
56549090053
-
20. Enhanced random search based incremental extreme learning machine
-
G. B. Huang, L. Chen, 20. Enhanced random search based incremental extreme learning machine, Neuro Comput. 71 (16-18), 3460-3468, 2008
-
(2008)
Neuro Comput
, vol.71
, Issue.16-18
, pp. 3460-3468
-
-
Huang, G.B.1
Chen, L.2
-
21
-
-
44649169676
-
Structure learning by pruning in independent component analysis
-
A. B. Nielsen, L. K. Hansen, Structure learning by pruning in independent component analysis, Neuro Comput. 71 (10-12), 2281-2290, 2008
-
(2008)
Neuro Comput
, vol.71
, Issue.10-12
, pp. 2281-2290
-
-
Nielsen, A.B.1
Hansen, L.K.2
-
22
-
-
53349120885
-
Neural network dimension selection for dynamical system identification
-
TX, 3-5 September
-
D. Sabo, X.-H. Yu, Neural network dimension selection for dynamical system identification, In: Proc. of 17th IEEE International Conference on Control Applications, San Antonio, TX, 3-5 September 2008, 972, 977
-
(2008)
Proc. of 17th IEEE International Conference on Control Applications, San Antonio
, vol.972
, pp. 977
-
-
Sabo, D.1
Yu, X.-H.2
-
23
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
S. C. Huang, Y. F. Huang, Bounds on the number of hidden neurons in multilayer perceptrons, IEEE T. Neural Networ. 2, 47-55, 1991
-
(1991)
IEEE T. Neural Networ
, vol.2
, pp. 47-55
-
-
Huang, S.C.1
Huang, Y.F.2
-
24
-
-
84867891849
-
A structure optimisation algorithm for feedforward neuralnetwork construction
-
H.-G. Han, J.-F. Qiao, A structure optimisation algorithm for feedforward neuralnetwork construction, Neurocomputing 99, 347-357, 2013
-
(2013)
Neurocomputing
, vol.99
, pp. 347-357
-
-
Han, H.-G.1
Qiao, J.-F.2
-
25
-
-
56449086760
-
An integrated growing-pruning method for feedforward network training
-
P. L. Narasimhaa, W. H. Delashmitb, M. T. Manrya, J. Lic, F. Maldonado, An integrated growing-pruning method for feedforward network training, Neurocomputing 71, 2831-2847, 2008
-
(2008)
Neurocomputing
, vol.71
, pp. 2831-2847
-
-
Narasimhaa, P.L.1
Delashmitb, W.H.2
Manrya, M.T.3
Lic, J.4
Maldonado, F.5
-
26
-
-
44649169676
-
Structure learning by pruning in independent component analysis
-
A. B. Nielsen, L. K. Hansen, Structure learning by pruning in independent component analysis, Neurocomputing, 71 (10-12), 2281-2290, 2008
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 2281-2290
-
-
Nielsen, A.B.1
Hansen, L.K.2
-
27
-
-
33646262331
-
Neural network topology optimization
-
Warsaw, Poland, 11-15 September, 2005 Springer, Berlin, Heidelberg
-
M. Attik, L. Bougrain, F. Alexandra, Neural Network topology optimization, In: Proceedings of ICANN'05, Lecture Notes in Computer Science, Vol. 3697, 5th International Conference, Warsaw, Poland, 11-15 September, 2005 (Springer, Berlin, Heidelberg, 2005) 53-58
-
(2005)
Proceedings of ICANN'05, Lecture Notes in Computer Science, 3697, 5th International Conference
, pp. 53-58
-
-
Attik, M.1
Bougrain, L.2
Alexandra, F.3
-
28
-
-
54449083953
-
Fast unit pruning algorithm for feed-forward neural network design
-
Q. Jun-fei, Z. Ying, H. Hong-gui, Fast unit pruning algorithm for feed-forward neural network design, App. Math. Comput. 205 (2), 662-667, 2008
-
(2008)
App. Math. Comput
, vol.205
, Issue.2
, pp. 662-667
-
-
Jun-Fei, Q.1
Ying, Z.2
Hong-Gui, H.3
-
29
-
-
3042552333
-
A modified version of a formal pruning algorithm based on local relative variance analysis
-
Hammamet, Tunisia, 21-24 March
-
N. Fnaiech, S. Abid, F. Fnaiech, M. Cheriet, A modified version of a formal pruning algorithm based on local relative variance analysis, First International IEEE Symposium on Control, Communications and Signal Processing, Hammamet, Tunisia, 21-24 March, 2004, 849, 852
-
(2004)
First International IEEE Symposium on Control, Communications and Signal Processing
, vol.849
, pp. 852
-
-
Fnaiech, N.1
Abid, S.2
Fnaiech, F.3
Cheriet, M.4
-
30
-
-
0030633575
-
A penalty function approach for pruning feedforward neural networks
-
R. Setiono, A penalty function approach for pruning feedforward neural networks, Neural Comput. 9 (1), 185-204, 1997
-
(1997)
Neural Comput
, vol.9
, Issue.1
, pp. 185-204
-
-
Setiono, R.1
-
31
-
-
53749105298
-
Enhancing the generalization ability of neural networks through controlling the hidden layers
-
W. Wan, S. Mabu, K. Shimada, K. Hirasawa, Enhancing the generalization ability of neural networks through controlling the hidden layers, J. Hu, App. Soft Comput. 9, 404-414, 2009
-
(2009)
J. Hu, App. Soft Comput
, vol.9
, pp. 404-414
-
-
Wan, W.1
Mabu, S.2
Shimada, K.3
Hirasawa, K.4
-
32
-
-
0028413960
-
A simple and effective method for removal of hidden units and weights
-
M. Hagiwara, A simple and effective method for removal of hidden units and weights, Neurocomputing, 6, 207-218, 1994
-
(1994)
Neurocomputing
, vol.6
, pp. 207-218
-
-
Hagiwara, M.1
-
33
-
-
0024124323
-
Neural net pruning: Why and how
-
San Diego, CA, USA, 24-27 July
-
J. Sietsma, Dow RJF, Neural net pruning: why and how, In: Proc. of the IEEE International Conference on Neural Networks, Vol. 1, San Diego, CA, USA, 24-27 July 1988, 325-333
-
(1988)
Proc. of the IEEE International Conference on Neural Networks
, vol.1
, pp. 325-333
-
-
Sietsma, J.1
Rjf, D.2
-
34
-
-
65149084176
-
Two phase construction of multilayer perceptrons using Information Theory
-
H.-J. Xing, B.-G. Hu, Two phase construction of multilayer perceptrons using Information Theory, IEEE T. Neural Networ. 20 (4), 715-721, 2009
-
(2009)
IEEE T. Neural Networ
, vol.20
, Issue.4
, pp. 715-721
-
-
Xing, H.-J.1
Hu, B.-G.2
-
35
-
-
78649288454
-
A node pruning algorithm for feedforward neural network based on neural complexity
-
Dalian, 13-15 August
-
Z. Zhang, J. Qiao, A Node Pruning Algorithm for Feedforward Neural Network Based on Neural Complexity, In: Int. Conf. on Intelligent Control and Information Processing, Dalian, 13-15 August 2010, 406-410
-
(2010)
Int. Conf. on Intelligent Control and Information Processing
, pp. 406-410
-
-
Zhang, Z.1
Qiao, J.2
-
36
-
-
0001420440
-
The evolution of connectivity: Pruning neural networks using genetic algorithms
-
IEE Press, Washington DC
-
D. Whitley, C. Bogart, The evolution of connectivity: Pruning neural networks using genetic algorithms, In: Int. Joint Conf. Neural Networks, 1 (IEE Press, Washington DC, 1990) 134-137
-
(1990)
Int. Joint Conf. Neural Networks
, vol.1
, pp. 134-137
-
-
Whitley, D.1
Bogart, C.2
-
37
-
-
33847675397
-
Optimizing feedforward artificial neural network architecture
-
P. G. Benardos, G.-C. Vosniakos, Optimizing feedforward artificial neural network architecture, Eng. App. Artif. Intelligence, 20, 365-382, 2007
-
(2007)
Eng. App. Artif. Intelligence
, vol.20
, pp. 365-382
-
-
Benardos, P.G.1
Vosniakos, G.-C.2
-
38
-
-
32544452874
-
Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure
-
X. Zeng, D. S.Yeung, Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure, Neuro Comput. 69, 825-837, 2006
-
(2006)
Neuro Comput
, vol.69
, pp. 825-837
-
-
Zeng, X.1
Yeung, D.S.2
-
39
-
-
33644884686
-
A node pruning algorithm based on a fourier amplitude sensitivity test method
-
P. Lauret, E. Fock, T. A. Mara, A Node Pruning Algorithm Based on a Fourier Amplitude Sensitivity Test Method, IEEE T. Neural Networ. 17 (2), 273-293, 2006
-
(2006)
IEEE T. Neural Networ
, vol.17
, Issue.2
, pp. 273-293
-
-
Lauret, P.1
Fock, E.2
Mara, T.A.3
-
40
-
-
0000494466
-
-
In. D. S. Touretzky (Ed.), (Morgan Kaufmann, San Mateo
-
Y. Le Cun, J. S. Denker, S. A. Solla, In. D. S. Touretzky (Ed.), Optimal brain damage, Advances in neural information processing systems (Morgan Kaufmann, San Mateo, 1990) 2, 598-605
-
(1990)
Optimal Brain Damage, Advances in Neural Information Processing Systems
, vol.2
, pp. 598-605
-
-
Le Cun, Y.1
Denker, J.S.2
Solla, S.A.3
-
41
-
-
84943270068
-
Optimal brain surgeon and general network pruning
-
B. Hassibi, D. G. Stork, G. J. Wolf, Optimal brain surgeon and general network pruning, In: Proc. of IEEE ICNN'93, 1, WDS'08 Proceedings of Contributed Papers, Part I, 2008, 293-299
-
(2008)
Proc. of IEEE ICNN'93, 1, WDS'08 Proceedings of Contributed Papers, Part i
, pp. 293-299
-
-
Hassibi, B.1
Stork, D.G.2
Wolf, G.J.3
-
42
-
-
85062405240
-
Dobd algorithm for training neural network
-
W. U. Jian-yu, H. E. Xiao-rong, DOBD Algorithm for Training Neural Network, Part I. Method, Chinese J. Process Eng. 2 (2), 172-176, 2002
-
(2002)
Part I. Method, Chinese J. Process Eng
, vol.2
, Issue.2
, pp. 172-176
-
-
Jian-Yu, W.U.1
Xiao-Rong, H.E.2
-
43
-
-
0032674833
-
A formal selection and pruning algorithm for feedforward artificial neural network optimization
-
P. V. S. Ponnapallii, K. C. Ho, M. Thomson, A formal selection and pruning algorithm for feedforward artificial neural network optimization, IEEE T. Neural Networ., 10 (4), 964-968, 1999
-
(1999)
IEEE T. Neural Networ.
, vol.10
, Issue.4
, pp. 964-968
-
-
Ponnapallii, P.V.S.1
Ho, K.C.2
Thomson, M.3
-
44
-
-
0029256585
-
Determining input features for multilayer perceptrons
-
L. M. Belue, K. W. Bauer, Determining input features for multilayer perceptrons, Neurocomputing 7, 111-121, 1995
-
(1995)
Neurocomputing
, vol.7
, pp. 111-121
-
-
Belue, L.M.1
Bauer, K.W.2
-
45
-
-
84855534224
-
A novel pruning algorithm for optimizing feedforward neural network of classification problems
-
G. Augasta, T. Kathirvalavakumar, A Novel Pruning Algorithm for Optimizing Feedforward Neural Network of Classification Problems, Neural Process. Lett. 34 (3), 241-258, 2011
-
(2011)
Neural Process. Lett
, vol.34
, Issue.3
, pp. 241-258
-
-
Augasta, G.1
Kathirvalavakumar, T.2
-
46
-
-
27644501247
-
A comparative study of neural network optimization techniques
-
Norwich, UK, 2-4 April, 1997, Artificial Nets and Genetic Algorithms Springer
-
T. Ragg, H. Braun, H. Landsberg, A comparative study of neural network optimization Techniques, In 13th International Conf. on Machine Learning, Norwich, UK, 2-4 April, 1997, Artificial Nets and Genetic Algorithms (Springer, 1997) 341-345
-
(1997)
13th International Conf. on Machine Learning
, pp. 341-345
-
-
Ragg, T.1
Braun, H.2
Landsberg, H.3
|