-
4
-
-
77950343112
-
A discriminative model for semi-supervised learning
-
M.-F. Balcan and A. Blum. A discriminative model for semi-supervised learning. Journal of the ACM, 57(3), 2010.
-
(2010)
Journal of the ACM
, vol.57
, Issue.3
-
-
Balcan, M.-F.1
Blum, A.2
-
5
-
-
84898930761
-
Co-training and expansion: Towards bridging theory and practice
-
MIT Press, Cambridge, MA
-
M.-F. Balcan, A. Blum, and K. Yang. Co-training and expansion: Towards bridging theory and practice. In Advances in Neural Information Processing Systems 17, pages 89-96. MIT Press, Cambridge, MA, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 89-96
-
-
Balcan, M.-F.1
Blum, A.2
Yang, K.3
-
6
-
-
77956501439
-
Does unlabeled data provably help? Worst-case analysis of the sample complexity of semi-supervised learning
-
Helsinki, Finland
-
S. Ben-David, T. Lu, and D. Pal. Does unlabeled data provably help? worst-case analysis of the sample complexity of semi-supervised learning. In Proceedings of the 21st Annual Conference on Learning Theory, pages 33-44, Helsinki, Finland, 2008.
-
(2008)
Proceedings of the 21st Annual Conference on Learning Theory
, pp. 33-44
-
-
Ben-David, S.1
Lu, T.2
Pal, D.3
-
8
-
-
33749246419
-
Efficient co-regularised least squares regression
-
Pittsburgh, PA
-
U. Brefeld, T. Gärtner, T. Scheffer, and S. Wrobel. Efficient co-regularised least squares regression. In Proceedings of the the 23th International Conference on Machine Learning, pages 137-144, Pittsburgh, PA, 2006.
-
(2006)
Proceedings of the the 23th International Conference on Machine Learning
, pp. 137-144
-
-
Brefeld, U.1
Gärtner, T.2
Scheffer, T.3
Wrobel, S.4
-
10
-
-
84899008485
-
Pac generalization bounds for co-training
-
MIT Press, Cambridge, MA
-
S. Dasgupta, M. Littman, and D. McAllester. PAC generalization bounds for co-training. In Advances in Neural Information Processing Systems 14, pages 375-382. MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 375-382
-
-
Dasgupta, S.1
Littman, M.2
McAllester, D.3
-
12
-
-
84871052642
-
Two view learning: Svm-2k, theory and practice
-
MIT Press, Cambridge, MA
-
J. Farquhar, D. R. Hardoon, H. Meng, J. Shawe-Taylor, and S. Szedmák. Two view learning: Svm-2k, theory and practice. In Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
-
-
Farquhar, J.1
Hardoon, D.R.2
Meng, H.3
Shawe-Taylor, J.4
Szedmák, S.5
-
13
-
-
26844464912
-
Corrected co-training for statistical parsers
-
Washington, DC
-
R. Hwa, M. Osborne, A. Sarkar, and M. Steedman. Corrected co-training for statistical parsers. In Working Notes of the ICML'03 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, Washington, DC, 2003.
-
(2003)
Working Notes of the ICML'03 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining
-
-
Hwa, R.1
Osborne, M.2
Sarkar, A.3
Steedman, M.4
-
16
-
-
85118305024
-
Bootstrapping statistical parsers from small data sets
-
Budapest, Hungary
-
M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen, S. Baker, and J. Crim. Bootstrapping statistical parsers from small data sets. In Proceedings of the 11th Conference on the European Chapter of the Association for Computational Linguistics, pages 331-338, Budapest, Hungary, 2003.
-
(2003)
Proceedings of the 11th Conference on the European Chapter of the Association for Computational Linguistics
, pp. 331-338
-
-
Steedman, M.1
Osborne, M.2
Sarkar, A.3
Clark, S.4
Hwa, R.5
Hockenmaier, J.6
Ruhlen, P.7
Baker, S.8
Crim, J.9
-
17
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
A. Tsybakov. Optimal aggregation of classifiers in statistical learning. The Annals of Statistics, 32(1):135-166, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, Issue.1
, pp. 135-166
-
-
Tsybakov, A.1
-
20
-
-
77956708689
-
Semi-supervised learning by disagreement
-
Z.-H. Zhou and M. Li. Semi-supervised learning by disagreement. Knowledge and Information Systems, 24(3):415-439, 2010.
-
(2010)
Knowledge and Information Systems
, vol.24
, Issue.3
, pp. 415-439
-
-
Zhou, Z.-H.1
Li, M.2
-
21
-
-
33746834100
-
Enhancing relevance feedback in image retrieval using unlabeled data
-
Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Transactions on Information Systems, 24(2):219-244, 2006.
-
(2006)
ACM Transactions on Information Systems
, vol.24
, Issue.2
, pp. 219-244
-
-
Zhou, Z.-H.1
Chen, K.-J.2
Dai, H.-B.3
-
22
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin at Madison
-
X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Department of Computer Sciences, University of Wisconsin at Madison, 2007.
-
(2007)
Technical Report, Department of Computer Sciences
-
-
Zhu, X.1
|