-
1
-
-
33745289074
-
Poly-gamma-glutamate in bacteria
-
Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 2006;60: 1091-1098.
-
(2006)
Mol. Microbiol.
, vol.60
, pp. 1091-1098
-
-
Candela, T.1
Fouet, A.2
-
2
-
-
0034786723
-
Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis
-
Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K, Yagi T, Misono H. Physiological and biochemical characteristics of poly γ-glutamate synthetase complex of Bacillus subtilis. Eur. J. Biochem. 2001;268: 5321-5328.
-
(2001)
Eur. J. Biochem.
, vol.268
, pp. 5321-5328
-
-
Ashiuchi, M.1
Nawa, C.2
Kamei, T.3
Song, J.J.4
Hong, S.P.5
Sung, M.H.6
Soda, K.7
Yagi, T.8
Misono, H.9
-
3
-
-
33645513746
-
Natural and edible biopolymer poly-γ-glutamic acid: Synthesis, production, and applications
-
Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem. Rec. 2005;5: 352-366.
-
(2005)
Chem. Rec.
, vol.5
, pp. 352-366
-
-
Sung, M.H.1
Park, C.2
Kim, C.J.3
Poo, H.4
Soda, K.5
Ashiuchi, M.6
-
4
-
-
0034946131
-
The production of poly-(γ-glutamic acid) from microorganisms and its various applications
-
Shih IL, Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001;79: 207-225.
-
(2001)
Bioresour. Technol.
, vol.79
, pp. 207-225
-
-
Shih, I.L.1
Van, Y.T.2
-
5
-
-
77953889643
-
New biological functions and applications of high-molecular-mass poly-γ-glutamic acid
-
Poo H, Park C, Kwak MS, Choi DY, Hong SP, Lee IH, Lim YT, Choi YK, Bae SR, Uyama H, Kim CJ, Sung MH. New biological functions and applications of high-molecular-mass poly-γ-glutamic acid. Chem. Biodivers. 2010;7: 1555-1562.
-
(2010)
Chem. Biodivers.
, vol.7
, pp. 1555-1562
-
-
Poo, H.1
Park, C.2
Kwak, M.S.3
Choi, D.Y.4
Hong, S.P.5
Lee, I.H.6
Lim, Y.T.7
Choi, Y.K.8
Bae, S.R.9
Uyama, H.10
Kim, C.J.11
Sung, M.H.12
-
6
-
-
33947216212
-
Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries
-
Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 2007;27: 1-19.
-
(2007)
Crit. Rev. Biotechnol.
, vol.27
, pp. 1-19
-
-
Buescher, J.M.1
Margaritis, A.2
-
7
-
-
77957877707
-
Biodegradable polymer matrix nanocomposites for tissue engineering: A review
-
Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym. Degrad. Stab. 2010;95: 2126-2146.
-
(2010)
Polym. Degrad. Stab.
, vol.95
, pp. 2126-2146
-
-
Armentano, I.1
Dottori, M.2
Fortunati, E.3
Mattioli, S.4
Kenny, J.M.5
-
8
-
-
84859780624
-
Bioactive silica-poly(γ-glutamic acid) hybrids for bone regeneration: Effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds
-
Poologasundarampillai G, Yu B, Tsigkou O, Valliant E, Yue S, Lee PD, Hamilton RW, Stevens MM, Kasuga T, Jones JR. Bioactive silica-poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter. 2012;8: 4822-4832.
-
(2012)
Soft Matter
, vol.8
, pp. 4822-4832
-
-
Poologasundarampillai, G.1
Yu, B.2
Tsigkou, O.3
Valliant, E.4
Yue, S.5
Lee, P.D.6
Hamilton, R.W.7
Stevens, M.M.8
Kasuga, T.9
Jones, J.R.10
-
9
-
-
0028129454
-
Modulation of crystal formation by bone phosphoproteins: Role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein
-
Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 1994;302: 175-179.
-
(1994)
Biochem. J.
, vol.302
, pp. 175-179
-
-
Hunter, G.K.1
Goldberg, H.A.2
-
10
-
-
84862027776
-
Biomimetic scaffolds for tissue engineering
-
Kim TG, Shin HS, Lim DW. Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 2012;22: 2446-2468.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 2446-2468
-
-
Kim, T.G.1
Shin, H.S.2
Lim, D.W.3
-
11
-
-
70349770906
-
A solvent-assisted compression molded of poly(L-lactide)/hydroxyapatite electrospun fibers for robust engineered scaffold systems
-
Luong ND, Moon IS, Nam JD. A solvent-assisted compression molded of poly(L-lactide)/hydroxyapatite electrospun fibers for robust engineered scaffold systems. Macromol. Mater. Eng. 2009;294: 699-704.
-
(2009)
Macromol. Mater. Eng.
, vol.294
, pp. 699-704
-
-
Luong, N.D.1
Moon, I.S.2
Nam, J.D.3
-
12
-
-
32144437418
-
How useful is SBF in predicting in vivo bone bioactivity?
-
Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27: 2907-2915.
-
(2006)
Biomaterials
, vol.27
, pp. 2907-2915
-
-
Kokubo, T.1
Takadama, H.2
-
13
-
-
27644579095
-
Development of nanocomposites for bone grafting
-
Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005;65: 2385-2406.
-
(2005)
Compos. Sci. Technol.
, vol.65
, pp. 2385-2406
-
-
Murugan, R.1
Ramakrishna, S.2
-
14
-
-
0042562089
-
Biomimetic materials for tissue engineering
-
Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24: 4353-4364.
-
(2003)
Biomaterials
, vol.24
, pp. 4353-4364
-
-
Shin, H.1
Jo, S.2
Mikos, A.G.3
-
15
-
-
41649100381
-
Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment
-
Sugino A, Miyazaki T, Ohtsuki C. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. J. Mater. Sci. Mater. Med. 2008;19: 2269-2274.
-
(2008)
J. Mater. Sci. Mater. Med.
, vol.19
, pp. 2269-2274
-
-
Sugino, A.1
Miyazaki, T.2
Ohtsuki, C.3
-
16
-
-
77957823292
-
Synthesis of bioactive class II poly-(γ-glutamic acid)/silica hybrids for bone regeneration
-
Poologasundarampillai G, Ionescu C, Tsigkou O, Murugesan M, Hill RG, Stevens MM, Hanna JV, Smith ME, Jones JR. Synthesis of bioactive class II poly-(γ-glutamic acid)/silica hybrids for bone regeneration. J. Mater. Chem. 2010;20: 8952-8961.
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 8952-8961
-
-
Poologasundarampillai, G.1
Ionescu, C.2
Tsigkou, O.3
Murugesan, M.4
Hill, R.G.5
Stevens, M.M.6
Hanna, J.V.7
Smith, M.E.8
Jones, J.R.9
-
17
-
-
84880980871
-
Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid
-
Miyazaki T, Kuramoto A, Hirakawa A, Shirosaki Y, Ohtsuki C. Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid. Dent. Mater. J. 2013;32: 544-549.
-
(2013)
Dent. Mater. J.
, vol.32
, pp. 544-549
-
-
Miyazaki, T.1
Kuramoto, A.2
Hirakawa, A.3
Shirosaki, Y.4
Ohtsuki, C.5
-
19
-
-
84875214835
-
Fabrication of three-dimensional poly(∈-caprolactone) scaffolds with hierarchical pore structures for tissue engineering
-
Zhang Q, Luo H, Zhang Y, Zhou Y, Ye Z, Tan W, Lang M. Fabrication of three-dimensional poly(∈-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33: 2094-2103.
-
(2013)
Mater. Sci. Eng. C Mater. Biol. Appl.
, vol.33
, pp. 2094-2103
-
-
Zhang, Q.1
Luo, H.2
Zhang, Y.3
Zhou, Y.4
Ye, Z.5
Tan, W.6
Lang, M.7
-
20
-
-
23644455504
-
Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications
-
Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26: 7436-7446.
-
(2005)
Biomaterials
, vol.26
, pp. 7436-7446
-
-
Lévesque, S.G.1
Lim, R.M.2
Shoichet, M.S.3
-
21
-
-
33745714196
-
Polyester scaffolds with bimodal pore size distribution for tissue engineering
-
Sosnowski S, Woźniak P, Lewandowska-Szumieł M. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Macromol. Biosci. 2006;6: 425-434.
-
(2006)
Macromol. Biosci.
, vol.6
, pp. 425-434
-
-
Sosnowski, S.1
Woźniak, P.2
Lewandowska-Szumieł, M.3
-
22
-
-
79959450345
-
Fabrication of mesoporous polymer monolith: A template-free approach
-
Okada K, Nandi M, Maruyama J, Oka T, Tsujimoto T, Kondoh K, Uyama H. Fabrication of mesoporous polymer monolith: a template-free approach. Chem. Commun. 2011;47: 7422-7424.
-
(2011)
Chem. Commun
, vol.47
, pp. 7422-7424
-
-
Okada, K.1
Nandi, M.2
Maruyama, J.3
Oka, T.4
Tsujimoto, T.5
Kondoh, K.6
Uyama, H.7
-
23
-
-
84862008205
-
Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method
-
Xin Y, Fujimoto T, Uyama H. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer. 2012;53: 2847-2853.
-
(2012)
Polymer
, vol.53
, pp. 2847-2853
-
-
Xin, Y.1
Fujimoto, T.2
Uyama, H.3
-
24
-
-
84880665597
-
Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation
-
Sun X, Fujimoto T, Uyama H. Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation. Polym. J. 2013;45: 1101-1106.
-
(2013)
Polym. J.
, vol.45
, pp. 1101-1106
-
-
Sun, X.1
Fujimoto, T.2
Uyama, H.3
-
25
-
-
84880653821
-
Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application
-
Park SB, Fujimoto T, Mizohata E, Inoue T, Sung MH, Uyama H. Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application. J. Microbiol. Biotecnol. 2013;23: 942-952.
-
(2013)
J. Microbiol. Biotecnol.
, vol.23
, pp. 942-952
-
-
Park, S.B.1
Fujimoto, T.2
Mizohata, E.3
Inoue, T.4
Sung, M.H.5
Uyama, H.6
-
26
-
-
84885419441
-
Macroscopic cavities within a microporous 3-D network: A poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique
-
Park SB, Sakamoto J, Sung MH, Uyama H. Macroscopic cavities within a microporous 3-D network: a poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique. Polymer. 2013;54: 6114-6118.
-
(2013)
Polymer
, vol.54
, pp. 6114-6118
-
-
Park, S.B.1
Sakamoto, J.2
Sung, M.H.3
Uyama, H.4
-
27
-
-
0034674547
-
Synthesis and fluorescence properties of new fluorescent, polymerizable, metal-chelating lipids
-
Roy BC, Peterson R, Mallik S, Campiglia AD. Synthesis and fluorescence properties of new fluorescent, polymerizable, metal-chelating lipids. J. Org. Chem. 2000;65: 3644-3651.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 3644-3651
-
-
Roy, B.C.1
Peterson, R.2
Mallik, S.3
Campiglia, A.D.4
-
28
-
-
0035814245
-
TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid
-
Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001;57: 441-448.
-
(2001)
J. Biomed. Mater. Res.
, vol.57
, pp. 441-448
-
-
Takadama, H.1
Kim, H.M.2
Kokubo, T.3
Nakamura, T.4
-
29
-
-
0036888474
-
FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde
-
Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23: 4811-4818.
-
(2002)
Biomaterials
, vol.23
, pp. 4811-4818
-
-
Chang, M.C.1
Tanaka, J.2
-
30
-
-
33847805985
-
Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution
-
Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 1974;13: 194-207.
-
(1974)
Inorg. Chem.
, vol.13
, pp. 194-207
-
-
Fowler, B.O.1
-
31
-
-
0031035758
-
Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy
-
Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci.: Mater. Med. 1997;8: 1-4.
-
(1997)
J. Mater. Sci.: Mater. Med.
, vol.8
, pp. 1-4
-
-
Rehman, I.1
Bonfield, W.2
-
32
-
-
0025449531
-
Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W
-
Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990;24: 721-734.
-
(1990)
J. Biomed. Mater. Res.
, vol.24
, pp. 721-734
-
-
Kokubo, T.1
Kushitani, H.2
Sakka, S.3
Kitsugi, T.4
Yamamuro, T.5
-
33
-
-
0034072746
-
Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process
-
Furuzono T, Taguchi T, Kishida A, Akashi M, Tamada Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 2000;50: 344-352.
-
(2000)
J. Biomed. Mater. Res.
, vol.50
, pp. 344-352
-
-
Furuzono, T.1
Taguchi, T.2
Kishida, A.3
Akashi, M.4
Tamada, Y.5
-
34
-
-
43849105609
-
MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin
-
Bernards MT, Qin C, Jiang S. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf., B. 2008;64: 236-247.
-
(2008)
Colloids Surf., B.
, vol.64
, pp. 236-247
-
-
Bernards, M.T.1
Qin, C.2
Jiang, S.3
-
36
-
-
0032534524
-
Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds
-
Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, Healy KE. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J. Biomed. Mater. Res. 1998;42: 491-499.
-
(1998)
J. Biomed. Mater. Res.
, vol.42
, pp. 491-499
-
-
Whang, K.1
Tsai, D.C.2
Nam, E.K.3
Aitken, M.4
Sprague, S.M.5
Patel, P.K.6
Healy, K.E.7
-
38
-
-
78649724173
-
Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants
-
Macdonald ML, Samuel RE, Shah NJ, Padera RF, Beben YM, Hammond PT. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials. 2011;32: 1446-1453.
-
(2011)
Biomaterials
, vol.32
, pp. 1446-1453
-
-
MacDonald, M.L.1
Samuel, R.E.2
Shah, N.J.3
Padera, R.F.4
Beben, Y.M.5
Hammond, P.T.6
-
39
-
-
84868463422
-
Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment
-
Kisiel M, Martino MM, Ventura M, Hubbell JA, Hilborn J, Ossipov DA. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials. 2013;34: 704-712.
-
(2013)
Biomaterials
, vol.34
, pp. 704-712
-
-
Kisiel, M.1
Martino, M.M.2
Ventura, M.3
Hubbell, J.A.4
Hilborn, J.5
Ossipov, D.A.6
-
40
-
-
65549157815
-
Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor
-
Hayashi C, Hasegawa U, Saita Y, Hemmi H, Hayata T, Nakashima K, Ezura Y, Amagasa T, Akiyoshi K, Noda M. Osteoblastic bone formation is induced by using nanogel-crosslinking hydrogel as novel scaffold for bone growth factor. J. Cell. Physiol. 2009;220: 1-7.
-
(2009)
J. Cell. Physiol.
, vol.220
, pp. 1-7
-
-
Hayashi, C.1
Hasegawa, U.2
Saita, Y.3
Hemmi, H.4
Hayata, T.5
Nakashima, K.6
Ezura, Y.7
Amagasa, T.8
Akiyoshi, K.9
Noda, M.10
-
41
-
-
84869093050
-
Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor
-
Florczyk SJ, Leung M, Jana S, Li Z, Bhattarai N, Huang JI, Hopper RA, Zhang M. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J. Biomed. Mater. Res. A. 2012;100A: 3408-3415.
-
(2012)
J. Biomed. Mater. Res. A
, vol.100 A
, pp. 3408-3415
-
-
Florczyk, S.J.1
Leung, M.2
Jana, S.3
Li, Z.4
Bhattarai, N.5
Huang, J.I.6
Hopper, R.A.7
Zhang, M.8
-
42
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27: 3413-3431.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.Z.2
Blaker, J.J.3
Boccaccini, A.R.4
-
43
-
-
44949223637
-
Porous ceramic bone scaffolds for vascularized bone tissue regeneration
-
Will J, Melcher R, Treul C, Travitzky N, Kneser U, Polykandriotis E, Horch R, Greil P. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J. Mater. Sci.: Mater. Med. 2008;19: 2781-2790.
-
(2008)
J. Mater. Sci.: Mater. Med.
, vol.19
, pp. 2781-2790
-
-
Will, J.1
Melcher, R.2
Treul, C.3
Travitzky, N.4
Kneser, U.5
Polykandriotis, E.6
Horch, R.7
Greil, P.8
-
44
-
-
45549085001
-
Osteogenesis and angiogenesis: The potential for engineering bone
-
Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell. Mater. 2008;15: 100-114.
-
(2008)
Eur. Cell. Mater.
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.C.2
-
45
-
-
84873455546
-
Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds
-
Mehdizadeh H, Sumo S, Bayrak ES, Brey EM, Cinar A. Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials. 2013;34: 2875-2887.
-
(2013)
Biomaterials
, vol.34
, pp. 2875-2887
-
-
Mehdizadeh, H.1
Sumo, S.2
Bayrak, E.S.3
Brey, E.M.4
Cinar, A.5
-
46
-
-
79959888418
-
The role of pore size on vascularization and tissue remodeling in PEG hydrogels
-
Chiu YC, Cheng MH, Engel H, Kao SW, Larson JC, Gupta S, Brey EM. The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials. 2011;32: 6045-6051.
-
(2011)
Biomaterials
, vol.32
, pp. 6045-6051
-
-
Chiu, Y.C.1
Cheng, M.H.2
Engel, H.3
Kao, S.W.4
Larson, J.C.5
Gupta, S.6
Brey, E.M.7
|