메뉴 건너뛰기




Volumn 25, Issue 17, 2014, Pages 1875-1890

Preparation of poly(γ-glutamic acid)/hydroxyapatite monolith via biomineralization for bone tissue engineering

Author keywords

biomineralization; hydroxyapatite; monolith; poly( glutamic acid); thermally induced phase separation; tissue engineering

Indexed keywords

AMINO ACIDS; BIOMINERALIZATION; BONE; CELL CULTURE; CELL ENGINEERING; HYDROXYAPATITE; PHASE SEPARATION; PHOSPHATASES; PHOSPHATE MINERALS; PORE SIZE; SCAFFOLDS (BIOLOGY); TISSUE; TISSUE ENGINEERING;

EID: 84908486523     PISSN: 09205063     EISSN: 15685624     Source Type: Journal    
DOI: 10.1080/09205063.2014.953404     Document Type: Article
Times cited : (16)

References (46)
  • 1
    • 33745289074 scopus 로고    scopus 로고
    • Poly-gamma-glutamate in bacteria
    • Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 2006;60: 1091-1098.
    • (2006) Mol. Microbiol. , vol.60 , pp. 1091-1098
    • Candela, T.1    Fouet, A.2
  • 3
    • 33645513746 scopus 로고    scopus 로고
    • Natural and edible biopolymer poly-γ-glutamic acid: Synthesis, production, and applications
    • Sung MH, Park C, Kim CJ, Poo H, Soda K, Ashiuchi M. Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem. Rec. 2005;5: 352-366.
    • (2005) Chem. Rec. , vol.5 , pp. 352-366
    • Sung, M.H.1    Park, C.2    Kim, C.J.3    Poo, H.4    Soda, K.5    Ashiuchi, M.6
  • 4
    • 0034946131 scopus 로고    scopus 로고
    • The production of poly-(γ-glutamic acid) from microorganisms and its various applications
    • Shih IL, Van YT. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresour. Technol. 2001;79: 207-225.
    • (2001) Bioresour. Technol. , vol.79 , pp. 207-225
    • Shih, I.L.1    Van, Y.T.2
  • 6
    • 33947216212 scopus 로고    scopus 로고
    • Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries
    • Buescher JM, Margaritis A. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 2007;27: 1-19.
    • (2007) Crit. Rev. Biotechnol. , vol.27 , pp. 1-19
    • Buescher, J.M.1    Margaritis, A.2
  • 8
    • 84859780624 scopus 로고    scopus 로고
    • Bioactive silica-poly(γ-glutamic acid) hybrids for bone regeneration: Effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds
    • Poologasundarampillai G, Yu B, Tsigkou O, Valliant E, Yue S, Lee PD, Hamilton RW, Stevens MM, Kasuga T, Jones JR. Bioactive silica-poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter. 2012;8: 4822-4832.
    • (2012) Soft Matter , vol.8 , pp. 4822-4832
    • Poologasundarampillai, G.1    Yu, B.2    Tsigkou, O.3    Valliant, E.4    Yue, S.5    Lee, P.D.6    Hamilton, R.W.7    Stevens, M.M.8    Kasuga, T.9    Jones, J.R.10
  • 9
    • 0028129454 scopus 로고
    • Modulation of crystal formation by bone phosphoproteins: Role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein
    • Hunter GK, Goldberg HA. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem. J. 1994;302: 175-179.
    • (1994) Biochem. J. , vol.302 , pp. 175-179
    • Hunter, G.K.1    Goldberg, H.A.2
  • 10
    • 84862027776 scopus 로고    scopus 로고
    • Biomimetic scaffolds for tissue engineering
    • Kim TG, Shin HS, Lim DW. Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 2012;22: 2446-2468.
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 2446-2468
    • Kim, T.G.1    Shin, H.S.2    Lim, D.W.3
  • 11
    • 70349770906 scopus 로고    scopus 로고
    • A solvent-assisted compression molded of poly(L-lactide)/hydroxyapatite electrospun fibers for robust engineered scaffold systems
    • Luong ND, Moon IS, Nam JD. A solvent-assisted compression molded of poly(L-lactide)/hydroxyapatite electrospun fibers for robust engineered scaffold systems. Macromol. Mater. Eng. 2009;294: 699-704.
    • (2009) Macromol. Mater. Eng. , vol.294 , pp. 699-704
    • Luong, N.D.1    Moon, I.S.2    Nam, J.D.3
  • 12
    • 32144437418 scopus 로고    scopus 로고
    • How useful is SBF in predicting in vivo bone bioactivity?
    • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27: 2907-2915.
    • (2006) Biomaterials , vol.27 , pp. 2907-2915
    • Kokubo, T.1    Takadama, H.2
  • 13
    • 27644579095 scopus 로고    scopus 로고
    • Development of nanocomposites for bone grafting
    • Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos. Sci. Technol. 2005;65: 2385-2406.
    • (2005) Compos. Sci. Technol. , vol.65 , pp. 2385-2406
    • Murugan, R.1    Ramakrishna, S.2
  • 14
    • 0042562089 scopus 로고    scopus 로고
    • Biomimetic materials for tissue engineering
    • Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24: 4353-4364.
    • (2003) Biomaterials , vol.24 , pp. 4353-4364
    • Shin, H.1    Jo, S.2    Mikos, A.G.3
  • 15
    • 41649100381 scopus 로고    scopus 로고
    • Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment
    • Sugino A, Miyazaki T, Ohtsuki C. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. J. Mater. Sci. Mater. Med. 2008;19: 2269-2274.
    • (2008) J. Mater. Sci. Mater. Med. , vol.19 , pp. 2269-2274
    • Sugino, A.1    Miyazaki, T.2    Ohtsuki, C.3
  • 17
    • 84880980871 scopus 로고    scopus 로고
    • Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid
    • Miyazaki T, Kuramoto A, Hirakawa A, Shirosaki Y, Ohtsuki C. Biomineralization on chemically synthesized collagen containing immobilized poly-γ-glutamic acid. Dent. Mater. J. 2013;32: 544-549.
    • (2013) Dent. Mater. J. , vol.32 , pp. 544-549
    • Miyazaki, T.1    Kuramoto, A.2    Hirakawa, A.3    Shirosaki, Y.4    Ohtsuki, C.5
  • 19
    • 84875214835 scopus 로고    scopus 로고
    • Fabrication of three-dimensional poly(∈-caprolactone) scaffolds with hierarchical pore structures for tissue engineering
    • Zhang Q, Luo H, Zhang Y, Zhou Y, Ye Z, Tan W, Lang M. Fabrication of three-dimensional poly(∈-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33: 2094-2103.
    • (2013) Mater. Sci. Eng. C Mater. Biol. Appl. , vol.33 , pp. 2094-2103
    • Zhang, Q.1    Luo, H.2    Zhang, Y.3    Zhou, Y.4    Ye, Z.5    Tan, W.6    Lang, M.7
  • 20
    • 23644455504 scopus 로고    scopus 로고
    • Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications
    • Lévesque SG, Lim RM, Shoichet MS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials. 2005;26: 7436-7446.
    • (2005) Biomaterials , vol.26 , pp. 7436-7446
    • Lévesque, S.G.1    Lim, R.M.2    Shoichet, M.S.3
  • 21
    • 33745714196 scopus 로고    scopus 로고
    • Polyester scaffolds with bimodal pore size distribution for tissue engineering
    • Sosnowski S, Woźniak P, Lewandowska-Szumieł M. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Macromol. Biosci. 2006;6: 425-434.
    • (2006) Macromol. Biosci. , vol.6 , pp. 425-434
    • Sosnowski, S.1    Woźniak, P.2    Lewandowska-Szumieł, M.3
  • 23
    • 84862008205 scopus 로고    scopus 로고
    • Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method
    • Xin Y, Fujimoto T, Uyama H. Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method. Polymer. 2012;53: 2847-2853.
    • (2012) Polymer , vol.53 , pp. 2847-2853
    • Xin, Y.1    Fujimoto, T.2    Uyama, H.3
  • 24
    • 84880665597 scopus 로고    scopus 로고
    • Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation
    • Sun X, Fujimoto T, Uyama H. Fabrication of a poly(vinyl alcohol) monolith via thermally impacted non-solvent-induced phase separation. Polym. J. 2013;45: 1101-1106.
    • (2013) Polym. J. , vol.45 , pp. 1101-1106
    • Sun, X.1    Fujimoto, T.2    Uyama, H.3
  • 25
    • 84880653821 scopus 로고    scopus 로고
    • Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application
    • Park SB, Fujimoto T, Mizohata E, Inoue T, Sung MH, Uyama H. Fabrication of poly(γ-glutamic acid) monolith by thermally induced phase separation and its application. J. Microbiol. Biotecnol. 2013;23: 942-952.
    • (2013) J. Microbiol. Biotecnol. , vol.23 , pp. 942-952
    • Park, S.B.1    Fujimoto, T.2    Mizohata, E.3    Inoue, T.4    Sung, M.H.5    Uyama, H.6
  • 26
    • 84885419441 scopus 로고    scopus 로고
    • Macroscopic cavities within a microporous 3-D network: A poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique
    • Park SB, Sakamoto J, Sung MH, Uyama H. Macroscopic cavities within a microporous 3-D network: a poly(γ-glutamic acid) monolith prepared by combination of particulate templates and a phase separation technique. Polymer. 2013;54: 6114-6118.
    • (2013) Polymer , vol.54 , pp. 6114-6118
    • Park, S.B.1    Sakamoto, J.2    Sung, M.H.3    Uyama, H.4
  • 27
    • 0034674547 scopus 로고    scopus 로고
    • Synthesis and fluorescence properties of new fluorescent, polymerizable, metal-chelating lipids
    • Roy BC, Peterson R, Mallik S, Campiglia AD. Synthesis and fluorescence properties of new fluorescent, polymerizable, metal-chelating lipids. J. Org. Chem. 2000;65: 3644-3651.
    • (2000) J. Org. Chem. , vol.65 , pp. 3644-3651
    • Roy, B.C.1    Peterson, R.2    Mallik, S.3    Campiglia, A.D.4
  • 28
    • 0035814245 scopus 로고    scopus 로고
    • TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid
    • Takadama H, Kim HM, Kokubo T, Nakamura T. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J. Biomed. Mater. Res. 2001;57: 441-448.
    • (2001) J. Biomed. Mater. Res. , vol.57 , pp. 441-448
    • Takadama, H.1    Kim, H.M.2    Kokubo, T.3    Nakamura, T.4
  • 29
    • 0036888474 scopus 로고    scopus 로고
    • FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde
    • Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23: 4811-4818.
    • (2002) Biomaterials , vol.23 , pp. 4811-4818
    • Chang, M.C.1    Tanaka, J.2
  • 30
    • 33847805985 scopus 로고
    • Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution
    • Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg. Chem. 1974;13: 194-207.
    • (1974) Inorg. Chem. , vol.13 , pp. 194-207
    • Fowler, B.O.1
  • 31
    • 0031035758 scopus 로고    scopus 로고
    • Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy
    • Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci.: Mater. Med. 1997;8: 1-4.
    • (1997) J. Mater. Sci.: Mater. Med. , vol.8 , pp. 1-4
    • Rehman, I.1    Bonfield, W.2
  • 32
    • 0025449531 scopus 로고
    • Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W
    • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 1990;24: 721-734.
    • (1990) J. Biomed. Mater. Res. , vol.24 , pp. 721-734
    • Kokubo, T.1    Kushitani, H.2    Sakka, S.3    Kitsugi, T.4    Yamamuro, T.5
  • 33
    • 0034072746 scopus 로고    scopus 로고
    • Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process
    • Furuzono T, Taguchi T, Kishida A, Akashi M, Tamada Y. Preparation and characterization of apatite deposited on silk fabric using an alternate soaking process. J. Biomed. Mater. Res. 2000;50: 344-352.
    • (2000) J. Biomed. Mater. Res. , vol.50 , pp. 344-352
    • Furuzono, T.1    Taguchi, T.2    Kishida, A.3    Akashi, M.4    Tamada, Y.5
  • 34
    • 43849105609 scopus 로고    scopus 로고
    • MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin
    • Bernards MT, Qin C, Jiang S. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf., B. 2008;64: 236-247.
    • (2008) Colloids Surf., B. , vol.64 , pp. 236-247
    • Bernards, M.T.1    Qin, C.2    Jiang, S.3
  • 38
    • 78649724173 scopus 로고    scopus 로고
    • Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants
    • Macdonald ML, Samuel RE, Shah NJ, Padera RF, Beben YM, Hammond PT. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials. 2011;32: 1446-1453.
    • (2011) Biomaterials , vol.32 , pp. 1446-1453
    • MacDonald, M.L.1    Samuel, R.E.2    Shah, N.J.3    Padera, R.F.4    Beben, Y.M.5    Hammond, P.T.6
  • 39
    • 84868463422 scopus 로고    scopus 로고
    • Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment
    • Kisiel M, Martino MM, Ventura M, Hubbell JA, Hilborn J, Ossipov DA. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment. Biomaterials. 2013;34: 704-712.
    • (2013) Biomaterials , vol.34 , pp. 704-712
    • Kisiel, M.1    Martino, M.M.2    Ventura, M.3    Hubbell, J.A.4    Hilborn, J.5    Ossipov, D.A.6
  • 41
    • 84869093050 scopus 로고    scopus 로고
    • Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor
    • Florczyk SJ, Leung M, Jana S, Li Z, Bhattarai N, Huang JI, Hopper RA, Zhang M. Enhanced bone tissue formation by alginate gel-assisted cell seeding in porous ceramic scaffolds and sustained release of growth factor. J. Biomed. Mater. Res. A. 2012;100A: 3408-3415.
    • (2012) J. Biomed. Mater. Res. A , vol.100 A , pp. 3408-3415
    • Florczyk, S.J.1    Leung, M.2    Jana, S.3    Li, Z.4    Bhattarai, N.5    Huang, J.I.6    Hopper, R.A.7    Zhang, M.8
  • 42
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27: 3413-3431.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.Z.2    Blaker, J.J.3    Boccaccini, A.R.4
  • 44
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: The potential for engineering bone
    • Kanczler JM, Oreffo ROC. Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell. Mater. 2008;15: 100-114.
    • (2008) Eur. Cell. Mater. , vol.15 , pp. 100-114
    • Kanczler, J.M.1    Oreffo, R.O.C.2
  • 45
    • 84873455546 scopus 로고    scopus 로고
    • Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds
    • Mehdizadeh H, Sumo S, Bayrak ES, Brey EM, Cinar A. Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds. Biomaterials. 2013;34: 2875-2887.
    • (2013) Biomaterials , vol.34 , pp. 2875-2887
    • Mehdizadeh, H.1    Sumo, S.2    Bayrak, E.S.3    Brey, E.M.4    Cinar, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.