메뉴 건너뛰기




Volumn 62, Issue 22, 2014, Pages 5962-5972

Dictionary learning for analysis-synthesis thresholding

Author keywords

Analysis dictionary learning; signal deblurring; sparse representation; thresholding

Indexed keywords

ANALYSIS-SYNTHESIS; DEBLURRING; DICTIONARY LEARNING; SPARSE REPRESENTATION; THRESHOLDING;

EID: 84908425479     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2014.2360157     Document Type: Article
Times cited : (55)

References (38)
  • 2
    • 34249671661 scopus 로고    scopus 로고
    • Analysis versus synthesis insignal priors
    • M. Elad, P. Milanfar, and R. Rubinstein, "Analysis versus synthesis insignal priors," Inverse Problems, vol. 23, no. 3, pp. 947-968, 2007.
    • (2007) Inverse Problems , vol.23 , Issue.3 , pp. 947-968
    • Elad, M.1    Milanfar, P.2    Rubinstein, R.3
  • 4
    • 79955778301 scopus 로고    scopus 로고
    • Compressedsensing with coherent and redundant dictionaries
    • E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, "Compressedsensing with coherent and redundant dictionaries," Appl. Comput.Harmon. Anal., vol. 31, no. 1, pp. 59-73, 2011.
    • (2011) Appl. Comput.Harmon. Anal. , vol.31 , Issue.1 , pp. 59-73
    • Candes, E.J.1    Eldar, Y.C.2    Needell, D.3    Randall, P.4
  • 5
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wave let shrink age
    • D. L. Donoho and J. M. Johnstone, "Ideal spatial adaptation bywaveletshrinkage," Biometrika, vol. 81, no. 3, pp. 425-455, 1994.
    • (1994) Biometrika , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, J.M.2
  • 6
    • 77952714665 scopus 로고    scopus 로고
    • Dictionaries for sparse representation modeling
    • R. Rubinstein, A. M. Bruckstein, and M. Elad, "Dictionaries for sparserepresentation modeling," Proc. IEEE, vol. 98, no. 6, pp. 1045-1057,2010.
    • (2010) Proc IEEE , vol.98 , Issue.6 , pp. 1045-1057
    • Rubinstein, R.1    Bruckstein, A.M.2    Elad, M.3
  • 7
    • 33947361050 scopus 로고    scopus 로고
    • Why simple shrinkage is still relevant for redundant representations?
    • M. Elad, "Why simple shrinkage is still relevant for redundant representations?,"IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5559-5569,2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.12 , pp. 5559-5569
    • Elad, M.1
  • 8
    • 84863759443 scopus 로고    scopus 로고
    • Sequential minimaleigenvalues-An approach to analysis dictionary learning presentedat the
    • Barcelona, Spain, Aug.29
    • B. Ophir,M. Elad, N. Bertin, and M. D. Plumbley, "Sequential minimaleigenvalues-An approach to analysis dictionary learning," presentedat the Eur. Signal Process. Conf. (EUSIPCO), Barcelona, Spain, Aug.29, 2011.
    • (2011) Eur. Signal Process. Conf. (EUSIPCO)
    • Ophir, B.1    Elad, M.2    Bertin, N.3    Plumbley, M.D.4
  • 9
    • 84863744151 scopus 로고    scopus 로고
    • Analysis operatorlearning for overcomplete cosparse representations presentedat the
    • Barcelona, Spain, Aug.29
    • M. Yaghoobi, S. Nam, R. Gribonval, and M. E. Davies, "Analysis operatorlearning for overcomplete cosparse representations," presentedat the Eur. Signal Process. Conf. (EUSIPCO), Barcelona, Spain, Aug.29, 2011.
    • (2011) Eur. Signal Process. Conf. (EUSIPCO)
    • Yaghoobi, M.1    Nam, S.2    Gribonval, R.3    Davies, M.E.4
  • 11
    • 84897584301 scopus 로고    scopus 로고
    • Analysis K-SVD: A dictionarylearningalgorithm for the analysis sparse model
    • R. Rubinstein, T. Peleg, andM. Elad, "Analysis K-SVD: A dictionarylearningalgorithm for the analysis sparse model," IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661-677, 2013.
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.3 , pp. 661-677
    • Rubinstein, R.1    Peleg, T.2    Elad, M.3
  • 12
    • 84875742034 scopus 로고    scopus 로고
    • Analysis operatorlearning and its application to image reconstruction
    • Jun.
    • S. Hawe, M. Kleinsteuber, and K. Diepold, "Analysis operatorlearning and its application to image reconstruction," IEEE Trans.Image Process., vol. 22, no. 6, Jun. 2013.
    • (2013) IEEE Trans.Image Process. , vol.22 , Issue.6
    • Hawe, S.1    Kleinsteuber, M.2    Diepold, K.3
  • 13
    • 84908399729 scopus 로고    scopus 로고
    • Learning analysis sparsity priors presented atthe
    • Singapore, May 2-6
    • G. Peyré and J. Fadili, "Learning analysis sparsity priors," presented atthe Sampl. Theory Appl. (SampTA), Singapore, May 2-6, 2011.
    • (2011) Sampl. Theory Appl. (SampTA)
    • Peyré, G.1    Fadili, J.2
  • 14
    • 84908399728 scopus 로고    scopus 로고
    • Learning-based analysis andsynthesis sparsity priors using bi-level optimization presented at theWorkshop
    • South Lake Tahoe, CA, USA, Dec. 7
    • Y. Chen, T. Pock, and H. Bischof, "Learning-based analysis andsynthesis sparsity priors using bi-level optimization," presented at theWorkshop Anal. Operat. Learn. vs. Diction. Learn.: Fraternal Twins inSparse Model., South Lake Tahoe, CA, USA, Dec. 7, 2012.
    • (2012) Anal. Operat. Learn. Vs. Diction. Learn.: Fraternal Twins InSparse Model.
    • Chen, Y.1    Pock, T.2    Bischof, H.3
  • 15
    • 84950459514 scopus 로고
    • Adapting to unknown smoothnessvia wavelet shrinkage
    • D. L. Donoho and I.M. Johnstone, "Adapting to unknown smoothnessvia wavelet shrinkage," J. Amer. Statist. Assoc., vol. 90, no. 432, pp.1200-1224, 1995.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , Issue.432 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 17
    • 0034258869 scopus 로고    scopus 로고
    • Adaptive wavelet thresholdingfor image denoising and compression
    • S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholdingfor image denoising and compression," IEEE Trans. Image Process.,vol. 9, no. 9, pp. 1532-1546, 2000.
    • (2000) IEEE Trans. Image Process. , vol.9 , Issue.9 , pp. 1532-1546
    • Chang, S.G.1    Yu, B.2    Vetterli, M.3
  • 19
    • 33746242092 scopus 로고    scopus 로고
    • Adapting to unknown sparsity by controlling the false discovery rate
    • F. Abramovich, Y. Benjamini, D. L. Donoho, and I. M. Johnstone,"Adapting to unknown sparsity by controlling the false discovery rate,"Ann. Statist., vol. 34, no. 2, pp. 584-653, 2006.
    • (2006) Ann. Statist. , vol.34 , Issue.2 , pp. 584-653
    • Abramovich, F.1    Benjamini, Y.2    Donoho, D.L.3    Johnstone, I.M.4
  • 20
    • 33750383209 scopus 로고    scopus 로고
    • The K-SVD: An algorithmfor designing of overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. M. Bruckstein, "The K-SVD: An algorithmfor designing of overcomplete dictionaries for sparse representation,"IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322,2006.
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.M.3
  • 21
  • 22
    • 41849138999 scopus 로고    scopus 로고
    • Deblurring using regularizedlocally-adaptive kernel regression
    • H. Takeda, S. Farsiu, and P. Milanfar, "Deblurring using regularizedlocally-adaptive kernel regression," IEEE Trans. Image Process., vol.17, no. 4, pp. 550-563, 2008.
    • (2008) IEEE Trans. Image Process , vol.17 , Issue.4 , pp. 550-563
    • Takeda, H.1    Farsiu, S.2    Milanfar, P.3
  • 24
    • 0742286341 scopus 로고    scopus 로고
    • ForWaRD: Fourier-waveletregularized deconvolution for ill-conditioned systems
    • R. Neelamani, H. Choi, and R. Baraniuk, "ForWaRD: Fourier-waveletregularized deconvolution for ill-conditioned systems," IEEE Trans.Signal Process., vol. 52, no. 2, pp. 418-433, 2004.
    • (2004) IEEE Trans.Signal Process. , vol.52 , Issue.2 , pp. 418-433
    • Neelamani, R.1    Choi, H.2    Baraniuk, R.3
  • 25
    • 27744576548 scopus 로고    scopus 로고
    • A spatially adaptive nonparametricregression image deblurring
    • V. Katkovnik, K. Egiazarian, and J. Astola, "A spatially adaptive nonparametricregression image deblurring," IEEE Trans. Image Process.,vol. 14, no. 10, pp. 1469-1478, 2005.
    • (2005) IEEE Trans. Image Process. , vol.14 , Issue.10 , pp. 1469-1478
    • Katkovnik, V.1    Egiazarian, K.2    Astola, J.3
  • 28
    • 41849131491 scopus 로고    scopus 로고
    • A discriminative approach for wavelet denoising
    • Y. Hel-Or and D. Shaked, "A discriminative approach for wavelet denoising,"IEEE Trans. Image Process., vol. 17, no. 4, pp. 443-457,2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.4 , pp. 443-457
    • Hel-Or, Y.1    Shaked, D.2
  • 29
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach.Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach.Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 31
    • 80051768384 scopus 로고    scopus 로고
    • A shrinkage learning approachfor single image super-resolution with overcomplete representations
    • Crete-Greece, Sep.5-11
    • A. Adler, Y. Hel-Or, and M. Elad, "A shrinkage learning approachfor single image super-resolution with overcomplete representations,"presented at the Eur. Conf. Comput. Vis. (ECCV), Crete-Greece, Sep.5-11, 2010.
    • (2010) Eur. Conf. Comput. Vis. (ECCV)
    • Adler, A.1    Hel-Or, Y.2    Elad, M.3
  • 32
    • 78049389432 scopus 로고    scopus 로고
    • A weighted discriminative approachfor image denoising with overcomplete representations presentedat the
    • Dallas, TX, USA, Mar. 14-19
    • A. Adler, Y. Hel-Or, and M. Elad, "A weighted discriminative approachfor image denoising with overcomplete representations," presentedat the Int. Conf. Acoust., Speech, Signal Process. (ICASSP),Dallas, TX, USA, Mar. 14-19, 2010.
    • (2010) Int. Conf. Acoust., Speech, Signal Process. (ICASSP)
    • Adler, A.1    Hel-Or, Y.2    Elad, M.3
  • 33
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithmfor deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithmfor deep belief nets," Neural Comput., vol. 18, no. 7, pp. 1527-1554,2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 36
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in adeep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,"Stacked denoising autoencoders: Learning useful representations in adeep network with a local denoising criterion," J. Mach. Learn. Res.,vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 38
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity:Learning sparse dictionaries for sparse signal approximation
    • R. Rubinstein, M. Zibulevsky, and M. Elad, "Double sparsity:Learning sparse dictionaries for sparse signal approximation," IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1553-1564, 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.3 , pp. 1553-1564
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.