메뉴 건너뛰기




Volumn 104, Issue , 2015, Pages 163-176

Sparse regularization techniques provide novel insights into outcome integration processes

Author keywords

Graph Net; Instruction based learning; MVPA; Outcome integration; Regularization; Structured sparsity

Indexed keywords

ACCURACY; ADULT; ALGORITHM; ANALYTIC METHOD; ARTICLE; BRAIN MAPPING; CONTROLLED STUDY; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; IMAGE ANALYSIS; INFORMATION PROCESSING; INSTRUCTION BASED LEARING; LEARNING STYLE; MALE; MATHEMATICAL COMPUTING; NEUROIMAGING; OUTCOME INTEGRATION PROCESS; SPARSE REGULARIZATION TECHNIQUE; SUPPORT VECTOR MACHINE; TASK PERFORMANCE; VISUAL STIMULATION; VOXEL BASED MORPHOMETRY; BRAIN; COMPUTER ASSISTED DIAGNOSIS; IMAGE PROCESSING; LEARNING; MULTIVARIATE ANALYSIS; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES; REPRODUCIBILITY; STATISTICAL MODEL; YOUNG ADULT;

EID: 84908406060     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2014.10.025     Document Type: Article
Times cited : (36)

References (72)
  • 3
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Bradley, Mangasarian Feature selection via concave minimization and support vector machines. Proc. Fifteenth Int. Conf. Mach. Learn 1998, 82-90.
    • (1998) Proc. Fifteenth Int. Conf. Mach. Learn , pp. 82-90
    • Bradley, M.1
  • 4
    • 84874962149 scopus 로고    scopus 로고
    • Separable networks for top-down attention to auditory non-spatial and visuospatial modalities
    • Braga R.M., Wilson L.R., Sharp D.J., Wise R.J.S., Leech R. Separable networks for top-down attention to auditory non-spatial and visuospatial modalities. NeuroImage 2013, 74:77-86.
    • (2013) NeuroImage , vol.74 , pp. 77-86
    • Braga, R.M.1    Wilson, L.R.2    Sharp, D.J.3    Wise, R.J.S.4    Leech, R.5
  • 5
    • 79952704626 scopus 로고    scopus 로고
    • Penalized least squares regression methods and applications to neuroimaging
    • Bunea F., She Y., Ombao H., Gongvatana A., Devlin K., Cohen R. Penalized least squares regression methods and applications to neuroimaging. NeuroImage 2011, 55:1519-1527.
    • (2011) NeuroImage , vol.55 , pp. 1519-1527
    • Bunea, F.1    She, Y.2    Ombao, H.3    Gongvatana, A.4    Devlin, K.5    Cohen, R.6
  • 6
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • Carroll M., Cecchi G., Rish I., Garg R., Rao A. Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 2009, 44:112-122.
    • (2009) NeuroImage , vol.44 , pp. 112-122
    • Carroll, M.1    Cecchi, G.2    Rish, I.3    Garg, R.4    Rao, A.5
  • 7
    • 84871870365 scopus 로고    scopus 로고
    • Rapid instructed task learning: a new window into the human brain's unique capacity for flexible cognitive control
    • Cole M.W., Laurent P., Stocco A. Rapid instructed task learning: a new window into the human brain's unique capacity for flexible cognitive control. Cogn. Affect. Behav. Neurosci. 2012, 13:1-22.
    • (2012) Cogn. Affect. Behav. Neurosci. , vol.13 , pp. 1-22
    • Cole, M.W.1    Laurent, P.2    Stocco, A.3
  • 8
    • 0036617156 scopus 로고    scopus 로고
    • Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging
    • Cools R., Clark L., Owen A.M., Robbins T.W. Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J. Neurosci. 2002, 22:4563-4567.
    • (2002) J. Neurosci. , vol.22 , pp. 4563-4567
    • Cools, R.1    Clark, L.2    Owen, A.M.3    Robbins, T.W.4
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 10
    • 79952746011 scopus 로고    scopus 로고
    • Model-based influences on humans' choices and striatal prediction errors
    • Daw N.D., Gershman S.J., Seymour B., Dayan P., Dolan R.J. Model-based influences on humans' choices and striatal prediction errors. Neuron 2011, 69:1204-1215.
    • (2011) Neuron , vol.69 , pp. 1204-1215
    • Daw, N.D.1    Gershman, S.J.2    Seymour, B.3    Dayan, P.4    Dolan, R.J.5
  • 11
    • 84905734628 scopus 로고    scopus 로고
    • Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging
    • Dohmatob E., Gramfort A., Thirion B., Varoquaux G. Benchmarking solvers for TV-l1 least-squares and logistic regression in brain imaging. PRNI 2014, 10.1109/PRNI.2014.6858516.
    • (2014) PRNI
    • Dohmatob, E.1    Gramfort, A.2    Thirion, B.3    Varoquaux, G.4
  • 12
    • 84885802926 scopus 로고    scopus 로고
    • Goals and habits in the brain
    • Dolan R.J., Dayan P. Goals and habits in the brain. Neuron 2013, 80:312-325.
    • (2013) Neuron , vol.80 , pp. 312-325
    • Dolan, R.J.1    Dayan, P.2
  • 14
    • 84877336908 scopus 로고    scopus 로고
    • Searchlight analysis: promise, pitfalls, and potential
    • Etzel J.A., Zacks J.M., Braver T.S. Searchlight analysis: promise, pitfalls, and potential. NeuroImage 2013, 78:261-269.
    • (2013) NeuroImage , vol.78 , pp. 261-269
    • Etzel, J.A.1    Zacks, J.M.2    Braver, T.S.3
  • 15
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: a library for large linear classification
    • Fan, Chang, Hsieh, Wang, Lin LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 2008, 9:1871-1874.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1871-1874
    • Fan, C.1    Hsieh, W.2    Lin3
  • 16
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman J.H., Hastie T., Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 2010, 33:1-22.
    • (2010) J. Stat. Softw. , vol.33 , pp. 1-22
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 79952712967 scopus 로고    scopus 로고
    • A differential-outcome effect in pigeons using spatial hedonically nondifferential outcomes
    • Friedrich A.M., Zentall T.R. A differential-outcome effect in pigeons using spatial hedonically nondifferential outcomes. Learn. Behav. 2011, 39:68-78.
    • (2011) Learn. Behav. , vol.39 , pp. 68-78
    • Friedrich, A.M.1    Zentall, T.R.2
  • 18
    • 55349099836 scopus 로고    scopus 로고
    • Sparse linear regression for reconstructing muscle activity from human cortical fMRI
    • Ganesh G., Burdet E., Haruno M., Kawato M. Sparse linear regression for reconstructing muscle activity from human cortical fMRI. NeuroImage 2008, 42:1463-1472.
    • (2008) NeuroImage , vol.42 , pp. 1463-1472
    • Ganesh, G.1    Burdet, E.2    Haruno, M.3    Kawato, M.4
  • 22
    • 84866055666 scopus 로고    scopus 로고
    • The implementation of verbal instructions: dissociating motor preparation from the formation of stimulus-response associations
    • Hartstra E., Waszak F., Brass M. The implementation of verbal instructions: dissociating motor preparation from the formation of stimulus-response associations. NeuroImage 2012, 63:1143-1153.
    • (2012) NeuroImage , vol.63 , pp. 1143-1153
    • Hartstra, E.1    Waszak, F.2    Brass, M.3
  • 23
    • 84862993252 scopus 로고    scopus 로고
    • Multivariate pattern analysis of fMRI: the early beginnings
    • Haxby J.V. Multivariate pattern analysis of fMRI: the early beginnings. NeuroImage 2012, 62:852-855.
    • (2012) NeuroImage , vol.62 , pp. 852-855
    • Haxby, J.V.1
  • 24
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby J.V., Gobbini, Furey Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 2001, 293:2425-2430.
    • (2001) Science , vol.293 , pp. 2425-2430
    • Haxby, J.V.1    Gobbini, F.2
  • 25
    • 33745587777 scopus 로고    scopus 로고
    • Decoding mental states from brain activity in humans
    • Haynes J.-D., Rees G. Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 2006, 7:523-534.
    • (2006) Nat. Rev. Neurosci. , vol.7 , pp. 523-534
    • Haynes, J.-D.1    Rees, G.2
  • 26
    • 0002161961 scopus 로고
    • Application of ridge analysis to regression problems
    • Hoerl Application of ridge analysis to regression problems. Chem. Eng. Prog. 1962, 58:54-59.
    • (1962) Chem. Eng. Prog. , vol.58 , pp. 54-59
    • Hoerl1
  • 27
    • 28844452879 scopus 로고    scopus 로고
    • Neural systems responding to degrees of uncertainty in human decision-making
    • Hsu M., Bhatt M., Adolphs R., Tranel D., Camerer C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 2005, 310:1680-1683.
    • (2005) Science , vol.310 , pp. 1680-1683
    • Hsu, M.1    Bhatt, M.2    Adolphs, R.3    Tranel, D.4    Camerer, C.F.5
  • 28
    • 33748448126 scopus 로고    scopus 로고
    • Behavioral, but not reward, risk modulates activation of prefrontal, parietal, and insular cortices
    • Huettel S.A. Behavioral, but not reward, risk modulates activation of prefrontal, parietal, and insular cortices. Cogn. Affect. Behav. Neurosci. 2006, 6:141-151.
    • (2006) Cogn. Affect. Behav. Neurosci. , vol.6 , pp. 141-151
    • Huettel, S.A.1
  • 29
    • 0036240796 scopus 로고    scopus 로고
    • Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex
    • Huettel S.A., Mack P.B., McCarthy G. Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex. Nat. Neurosci. 2002, 5:485-490.
    • (2002) Nat. Neurosci. , vol.5 , pp. 485-490
    • Huettel, S.A.1    Mack, P.B.2    McCarthy, G.3
  • 31
    • 77954892267 scopus 로고    scopus 로고
    • Functional specificity in the human brain: a window into the functional architecture of the mind
    • Kanwisher N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. 2010, 107:11163-11170.
    • (2010) Proc. Natl. Acad. Sci. , vol.107 , pp. 11163-11170
    • Kanwisher, N.1
  • 32
    • 84856004707 scopus 로고    scopus 로고
    • Multivariate pattern analysis reveals common neural patterns across individuals during touch observation
    • Kaplan J.T., Meyer K. Multivariate pattern analysis reveals common neural patterns across individuals during touch observation. NeuroImage 2012, 60:204-212.
    • (2012) NeuroImage , vol.60 , pp. 204-212
    • Kaplan, J.T.1    Meyer, K.2
  • 33
    • 41149148634 scopus 로고    scopus 로고
    • Identifying natural images from human brain activity
    • Kay K.N., Naselaris T., Prenger R.J., Gallant J.L. Identifying natural images from human brain activity. Nature 2008, 452:352-355.
    • (2008) Nature , vol.452 , pp. 352-355
    • Kay, K.N.1    Naselaris, T.2    Prenger, R.J.3    Gallant, J.L.4
  • 34
    • 67649239046 scopus 로고    scopus 로고
    • Recruitment of an area involved in eye movements during mental arithmetic
    • Knops A., Thirion B., Hubbard E.M., Michel V., Dehaene S. Recruitment of an area involved in eye movements during mental arithmetic. Science 2009, 324:1583-1585.
    • (2009) Science , vol.324 , pp. 1583-1585
    • Knops, A.1    Thirion, B.2    Hubbard, E.M.3    Michel, V.4    Dehaene, S.5
  • 36
  • 39
    • 28244492778 scopus 로고    scopus 로고
    • Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data
    • Mourão-Miranda J., Bokde A.L.W., Born C., Hampel H., Stetter M. Classifying brain states and determining the discriminating activation patterns: support vector machine on functional MRI data. NeuroImage 2005, 28:980-995.
    • (2005) NeuroImage , vol.28 , pp. 980-995
    • Mourão-Miranda, J.1    Bokde, A.L.W.2    Born, C.3    Hampel, H.4    Stetter, M.5
  • 41
    • 21444453526 scopus 로고    scopus 로고
    • Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes
    • Nieuwenhuis S., Slagter H.A., von Geusau N.J.A., Heslenfeld D.J., Holroyd C.B. Knowing good from bad: differential activation of human cortical areas by positive and negative outcomes. Eur. J. Neurosci. 2005, 21:3161-3168.
    • (2005) Eur. J. Neurosci. , vol.21 , pp. 3161-3168
    • Nieuwenhuis, S.1    Slagter, H.A.2    von Geusau, N.J.A.3    Heslenfeld, D.J.4    Holroyd, C.B.5
  • 42
    • 84884552049 scopus 로고    scopus 로고
    • Brain systems for probabilistic and dynamic prediction: computational specificity and integration
    • O'Reilly J.X., Jbabdi S., Rushworth M.F.S., Behrens T.E.J. Brain systems for probabilistic and dynamic prediction: computational specificity and integration. PLoS Biol. 2013, 11:e1001662.
    • (2013) PLoS Biol. , vol.11 , pp. e1001662
    • O'Reilly, J.X.1    Jbabdi, S.2    Rushworth, M.F.S.3    Behrens, T.E.J.4
  • 43
    • 79954991674 scopus 로고    scopus 로고
    • Information mapping with pattern classifiers: a comparative study
    • Pereira F., Botvinick M. Information mapping with pattern classifiers: a comparative study. NeuroImage 2011, 56:476-496.
    • (2011) NeuroImage , vol.56 , pp. 476-496
    • Pereira, F.1    Botvinick, M.2
  • 44
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: a tutorial overview
    • Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 2009, 45:S199-S209.
    • (2009) NeuroImage , vol.45 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 45
    • 33746711623 scopus 로고    scopus 로고
    • Neural differentiation of expected reward and risk in human subcortical structures
    • Preuschoff K., Bossaerts P., Quartz S.R. Neural differentiation of expected reward and risk in human subcortical structures. Neuron 2006, 51:381-390.
    • (2006) Neuron , vol.51 , pp. 381-390
    • Preuschoff, K.1    Bossaerts, P.2    Quartz, S.R.3
  • 46
    • 40849106781 scopus 로고    scopus 로고
    • Human insula activation reflects risk prediction errors as well as risk
    • Preuschoff K., Quartz S.R., Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 2008, 28:2745-2752.
    • (2008) J. Neurosci. , vol.28 , pp. 2745-2752
    • Preuschoff, K.1    Quartz, S.R.2    Bossaerts, P.3
  • 49
    • 77955929976 scopus 로고    scopus 로고
    • Rapid formation of pragmatic rule representations in the human brain during instruction-based learning
    • Ruge H., Wolfensteller U. Rapid formation of pragmatic rule representations in the human brain during instruction-based learning. Cereb. Cortex 2010, 20:1656-1667.
    • (2010) Cereb. Cortex , vol.20 , pp. 1656-1667
    • Ruge, H.1    Wolfensteller, U.2
  • 50
    • 84871896098 scopus 로고    scopus 로고
    • Functional integration processes underlying the instruction-based learning of novel goal-directed behaviors
    • Ruge H., Wolfensteller U. Functional integration processes underlying the instruction-based learning of novel goal-directed behaviors. NeuroImage 2013, 68:162-172.
    • (2013) NeuroImage , vol.68 , pp. 162-172
    • Ruge, H.1    Wolfensteller, U.2
  • 51
    • 77951976541 scopus 로고    scopus 로고
    • Sparse logistic regression for whole-brain classification of fMRI data
    • Ryali S., Supekar K., Abrams D.A., Menon V. Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 2010, 51:752-764.
    • (2010) NeuroImage , vol.51 , pp. 752-764
    • Ryali, S.1    Supekar, K.2    Abrams, D.A.3    Menon, V.4
  • 53
    • 84886381026 scopus 로고    scopus 로고
    • Linear reconstruction of perceived images from human brain activity
    • Schoenmakers S., Barth M., Heskes T., van Gerven M. Linear reconstruction of perceived images from human brain activity. NeuroImage 2013, 83:951-961.
    • (2013) NeuroImage , vol.83 , pp. 951-961
    • Schoenmakers, S.1    Barth, M.2    Heskes, T.3    van Gerven, M.4
  • 54
    • 80054765593 scopus 로고    scopus 로고
    • The posterior superior temporal sulcus is sensitive to the outcome of human and non-human goal-directed actions
    • Shultz S., Lee S.M., Pelphrey K., McCarthy G. The posterior superior temporal sulcus is sensitive to the outcome of human and non-human goal-directed actions. Soc. Cogn. Affect. Neurosci. 2010, 6:602-611.
    • (2010) Soc. Cogn. Affect. Neurosci. , vol.6 , pp. 602-611
    • Shultz, S.1    Lee, S.M.2    Pelphrey, K.3    McCarthy, G.4
  • 55
    • 77955405900 scopus 로고    scopus 로고
    • Feature selection guided by structural information
    • Slawski M., Zu Castell W., Tutz G. Feature selection guided by structural information. Ann. Appl. Stat. 2010, 4:1056-1080.
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 1056-1080
    • Slawski, M.1    Zu Castell, W.2    Tutz, G.3
  • 56
    • 84868260207 scopus 로고    scopus 로고
    • Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control
    • Stelzer J., Chen Y., Turner R. Statistical inference and multiple testing correction in classification-based multi-voxel pattern analysis (MVPA): random permutations and cluster size control. NeuroImage 2013, 65:69-82.
    • (2013) NeuroImage , vol.65 , pp. 69-82
    • Stelzer, J.1    Chen, Y.2    Turner, R.3
  • 57
    • 33847026433 scopus 로고    scopus 로고
    • Analysis of a large fMRI cohort: statistical and methodological issues for group analyses
    • Thirion B., Pinel P., Mériaux S., Roche A., Dehaene S., Poline J.-B. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. NeuroImage 2007, 35:105-120.
    • (2007) NeuroImage , vol.35 , pp. 105-120
    • Thirion, B.1    Pinel, P.2    Mériaux, S.3    Roche, A.4    Dehaene, S.5    Poline, J.-B.6
  • 59
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. Ser. B Methodol. , vol.58 , pp. 267-288
    • Tibshirani1
  • 60
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Tikhonov Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963, 4:1035-1038.
    • (1963) Sov. Math. Dokl. , vol.4 , pp. 1035-1038
    • Tikhonov1
  • 61
    • 0000067524 scopus 로고
    • Are expectancies based upon different positive reinforcing events discriminably different?
    • Trapold M.A. Are expectancies based upon different positive reinforcing events discriminably different?. Learn. Motiv. 1970, 1:129-140.
    • (1970) Learn. Motiv. , vol.1 , pp. 129-140
    • Trapold, M.A.1
  • 62
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 2002, 15:273-289.
    • (2002) NeuroImage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6    Mazoyer, B.7    Joliot, M.8
  • 63
    • 22844450565 scopus 로고    scopus 로고
    • Behavioral and associative effects of differential outcomes in discrimination learning
    • Urcuioli P.J. Behavioral and associative effects of differential outcomes in discrimination learning. Anim. Learn. Behav. 2005, 33:1-21.
    • (2005) Anim. Learn. Behav. , vol.33 , pp. 1-21
    • Urcuioli, P.J.1
  • 64
    • 78651477824 scopus 로고    scopus 로고
    • Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience
    • Wager T.D., Atlas L.Y., Leotti L.A., Rilling J.K. Predicting individual differences in placebo analgesia: contributions of brain activity during anticipation and pain experience. J. Neurosci. 2011, 31:439-452.
    • (2011) J. Neurosci. , vol.31 , pp. 439-452
    • Wager, T.D.1    Atlas, L.Y.2    Leotti, L.A.3    Rilling, J.K.4
  • 65
    • 84899966189 scopus 로고    scopus 로고
    • Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine
    • Watanabe T., Kessler D., Scott C., Angstadt M., Sripada C. Disease prediction based on functional connectomes using a scalable and spatially-informed support vector machine. NeuroImage 2014, 96:183-202.
    • (2014) NeuroImage , vol.96 , pp. 183-202
    • Watanabe, T.1    Kessler, D.2    Scott, C.3    Angstadt, M.4    Sripada, C.5
  • 66
    • 80051760390 scopus 로고    scopus 로고
    • On the timescale of stimulus-based action-effect learning
    • Wolfensteller U., Ruge H. On the timescale of stimulus-based action-effect learning. Q. J. Exp. Psychol. 2011, 64:1273-1289.
    • (2011) Q. J. Exp. Psychol. , vol.64 , pp. 1273-1289
    • Wolfensteller, U.1    Ruge, H.2
  • 67
    • 84867130062 scopus 로고    scopus 로고
    • Frontostriatal mechanisms in instruction-based learning as a hallmark of flexible goal-directed behavior
    • Wolfensteller U., Ruge H. Frontostriatal mechanisms in instruction-based learning as a hallmark of flexible goal-directed behavior. Front. Psychol. 2012, 3.
    • (2012) Front. Psychol. , vol.3
    • Wolfensteller, U.1    Ruge, H.2
  • 68
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert D.H. The lack of a priori distinctions between learning algorithms. Neural Comput. 1996, 8:1341-1390.
    • (1996) Neural Comput. , vol.8 , pp. 1341-1390
    • Wolpert, D.H.1
  • 69
    • 56149105866 scopus 로고    scopus 로고
    • Neural substrates for reversing stimulus-outcome and stimulus-response associations
    • Xue G., Ghahremani D.G., Poldrack R.A. Neural substrates for reversing stimulus-outcome and stimulus-response associations. J. Neurosci. 2008, 28:11196-11204.
    • (2008) J. Neurosci. , vol.28 , pp. 11196-11204
    • Xue, G.1    Ghahremani, D.G.2    Poldrack, R.A.3
  • 70
    • 55349089531 scopus 로고    scopus 로고
    • Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
    • Yamashita O., Sato M., Yoshioka T., Tong F., Kamitani Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 2008, 42:1414-1429.
    • (2008) NeuroImage , vol.42 , pp. 1414-1429
    • Yamashita, O.1    Sato, M.2    Yoshioka, T.3    Tong, F.4    Kamitani, Y.5
  • 71
    • 79955462115 scopus 로고    scopus 로고
    • Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory
    • Zanto T.P., Rubens M.T., Thangavel A., Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat. Neurosci. 2011, 14:656-661.
    • (2011) Nat. Neurosci. , vol.14 , pp. 656-661
    • Zanto, T.P.1    Rubens, M.T.2    Thangavel, A.3    Gazzaley, A.4
  • 72
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H., Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat Methodol. 2005, 67:301-320.
    • (2005) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.