-
1
-
-
84868613789
-
Molecular pathogenesis and clinical management of Fanconi anemia
-
Kee Y, D'Andrea AD. 2012. Molecular pathogenesis and clinical management of Fanconi anemia. J. Clin. Invest. 122:3799-3806. http://dx.doi.org/10.1172/JCI58321.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 3799-3806
-
-
Kee, Y.1
D'Andrea, A.D.2
-
2
-
-
84891063166
-
Fanconi anemia: a signal transduction and DNA repair pathway
-
Kupfer GM. 2013. Fanconi anemia: a signal transduction and DNA repair pathway. Yale J. Biol. Med. 86:491-497.
-
(2013)
Yale J. Biol. Med.
, vol.86
, pp. 491-497
-
-
Kupfer, G.M.1
-
3
-
-
67349187702
-
The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities
-
Naim V, Rosselli F. 2009. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat. Cell Biol. 11:761-768. http://dx.doi.org/10.1038/ncb1883.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 761-768
-
-
Naim, V.1
Rosselli, F.2
-
4
-
-
77955889790
-
Expanded roles of the Fanconi anemia pathway in preserving genomic stability
-
Kee Y, D'Andrea AD. 2010. Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev. 24:1680-1694. http://dx.doi.org/10.1101/gad.1955310.
-
(2010)
Genes Dev
, vol.24
, pp. 1680-1694
-
-
Kee, Y.1
D'Andrea, A.D.2
-
5
-
-
84863753191
-
A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2
-
Schlacher K, Wu H, Jasin M. 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106-116. http://dx.doi.org/10.1016/j.ccr.2012.05.015.
-
(2012)
Cancer Cell
, vol.22
, pp. 106-116
-
-
Schlacher, K.1
Wu, H.2
Jasin, M.3
-
6
-
-
72149090671
-
FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia
-
Deans AJ, West SC. 2009. FANCM connects the genome instability disorders Bloom's syndrome and Fanconi anemia. Mol. Cell 36:943-953. http://dx.doi.org/10.1016/j.molcel.2009.12.006.
-
(2009)
Mol. Cell
, vol.36
, pp. 943-953
-
-
Deans, A.J.1
West, S.C.2
-
7
-
-
26944499485
-
The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway
-
Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P, Patel KJ. 2005. The vertebrate Hef ortholog is a component of the Fanconi anemia tumor-suppressor pathway. Nat. Struct. Mol. Biol. 12:763-771. http://dx.doi.org/10.1038/nsmb981.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 763-771
-
-
Mosedale, G.1
Niedzwiedz, W.2
Alpi, A.3
Perrina, F.4
Pereira-Leal, J.B.5
Johnson, M.6
Langevin, F.7
Pace, P.8
Patel, K.J.9
-
8
-
-
25144449181
-
A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M
-
Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, Steltenpool J, Stone S, Dokal I, Mathew CG, Hoatlin M, Joenje H, de Winter JP, Wang W. 2005. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 37: 958-963. http://dx.doi.org/10.1038/ng1626.
-
(2005)
Nat. Genet.
, vol.37
, pp. 958-963
-
-
Meetei, A.R.1
Medhurst, A.L.2
Ling, C.3
Xue, Y.4
Singh, T.R.5
Bier, P.6
Steltenpool, J.7
Stone, S.8
Dokal, I.9
Mathew, C.G.10
Hoatlin, M.11
Joenje, H.12
de Winter, J.P.13
Wang, W.14
-
9
-
-
34247110291
-
Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
-
Smogorzewska A, Matsuoka S, Vinciguerra P, McDonald ER, 3rd, Hurov KE, Luo J, Ballif BA, Gygi SP, Hofmann K, D'Andrea AD, Elledge SJ. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289-301. http: //dx.doi.org/10.1016/j.cell.2007.03.009.
-
(2007)
Cell
, vol.129
, pp. 289-301
-
-
Smogorzewska, A.1
Matsuoka, S.2
Vinciguerra, P.3
McDonald, E.R.4
Hurov, K.E.5
Luo, J.6
Ballif, B.A.7
Gygi, S.P.8
Hofmann, K.9
D'Andrea, A.D.10
Elledge, S.J.11
-
10
-
-
0035105291
-
Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway
-
Garcia-Higuera I, Taniguchi T, Ganesan S, Meyn MS, Timmers C, Hejna J, Grompe M, D'Andrea AD. 2001. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7:249-262. http://dx.doi.org/10.1016/S1097-2765(01)00173-3.
-
(2001)
Mol. Cell
, vol.7
, pp. 249-262
-
-
Garcia-Higuera, I.1
Taniguchi, T.2
Ganesan, S.3
Meyn, M.S.4
Timmers, C.5
Hejna, J.6
Grompe, M.7
D'Andrea, A.D.8
-
11
-
-
34548759123
-
Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins
-
Wang W. 2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8:735-748. http: //dx.doi.org/10.1038/nrg2159.
-
(2007)
Nat. Rev. Genet.
, vol.8
, pp. 735-748
-
-
Wang, W.1
-
12
-
-
77952600845
-
Susceptibility pathways in Fanconi's anemia and breast cancer
-
D'Andrea AD. 2010. Susceptibility pathways in Fanconi's anemia and breast cancer. N. Engl. J. Med. 362:1909-1919. http://dx.doi.org/10.1056 /NEJMra0809889.
-
(2010)
N. Engl. J. Med.
, vol.362
, pp. 1909-1919
-
-
D'Andrea, A.D.1
-
13
-
-
54349114671
-
BLAP18/RMI2, a novel OB-foldcontaining protein, is an essential component of the Bloom helicasedouble Holliday junction dissolvasome
-
Singh TR, Ali AM, Busygina V, Raynard S, Fan Q, Du CH, Andreassen PR, Sung P, Meetei AR. 2008. BLAP18/RMI2, a novel OB-foldcontaining protein, is an essential component of the Bloom helicasedouble Holliday junction dissolvasome. Genes Dev. 22:2856-2868. http: //dx.doi.org/10.1101/gad.1725108.
-
(2008)
Genes Dev
, vol.22
, pp. 2856-2868
-
-
Singh, T.R.1
Ali, A.M.2
Busygina, V.3
Raynard, S.4
Fan, Q.5
Du, C.H.6
Andreassen, P.R.7
Sung, P.8
Meetei, A.R.9
-
14
-
-
54349099705
-
RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability
-
Xu D, Guo R, Sobeck A, Bachrati CZ, Yang J, Enomoto T, Brown GW, Hoatlin ME, Hickson ID, Wang W. 2008. RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. Genes Dev. 22:2843-2855. http://dx.doi.org/10.1101/gad.1708608.
-
(2008)
Genes Dev
, vol.22
, pp. 2843-2855
-
-
Xu, D.1
Guo, R.2
Sobeck, A.3
Bachrati, C.Z.4
Yang, J.5
Enomoto, T.6
Brown, G.W.7
Hoatlin, M.E.8
Hickson, I.D.9
Wang, W.10
-
15
-
-
17844386117
-
BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity
-
Yin J, Sobeck A, Xu C, Meetei AR, Hoatlin M, Li L, Wang W. 2005. BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity.EMBOJ. 24:1465-1476. http://dx.doi.org /10.1038/sj.emboj.7600622.
-
(2005)
EMBOJ
, vol.24
, pp. 1465-1476
-
-
Yin, J.1
Sobeck, A.2
Xu, C.3
Meetei, A.R.4
Hoatlin, M.5
Li, L.6
Wang, W.7
-
16
-
-
0038642027
-
A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome
-
Meetei AR, Sechi S, Wallisch M, Yang D, Young MK, Joenje H, Hoatlin ME, Wang W. 2003. A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Mol. Cell. Biol. 23:3417-3426. http://dx.doi.org/10.1128/MCB.23.10.3417-3426.2003.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 3417-3426
-
-
Meetei, A.R.1
Sechi, S.2
Wallisch, M.3
Yang, D.4
Young, M.K.5
Joenje, H.6
Hoatlin, M.E.7
Wang, W.8
-
17
-
-
84880534493
-
FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery
-
Chaudhury I, Sareen A, Raghunandan M, Sobeck A. 2013. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res. 41:6444-6459. http://dx.doi.org/10.1093/nar/gkt348.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 6444-6459
-
-
Chaudhury, I.1
Sareen, A.2
Raghunandan, M.3
Sobeck, A.4
-
18
-
-
77958473038
-
Human KIAA1018/FAN1 localizes to stalled replication forks via its ubiquitin-binding domain
-
Shereda RD, Machida Y, Machida YJ. 2010. Human KIAA1018/FAN1 localizes to stalled replication forks via its ubiquitin-binding domain. Cell Cycle 9:3977-3983. http://dx.doi.org/10.4161/cc.9.19.13207.
-
(2010)
Cell Cycle
, vol.9
, pp. 3977-3983
-
-
Shereda, R.D.1
Machida, Y.2
Machida, Y.J.3
-
19
-
-
77955290719
-
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
-
Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-696. http://dx.doi.org/10.1126/science.1192656.
-
(2010)
Science
, vol.329
, pp. 693-696
-
-
Liu, T.1
Ghosal, G.2
Yuan, J.3
Chen, J.4
Huang, J.5
-
20
-
-
77954279611
-
Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
-
Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, Lademann C, Cannavo E, Sartori AA, Hengartner MO, Jiricny J. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77-88. http://dx.doi.org/10.1016/j.cell.2010.06.022.
-
(2010)
Cell
, vol.142
, pp. 77-88
-
-
Kratz, K.1
Schopf, B.2
Kaden, S.3
Sendoel, A.4
Eberhard, R.5
Lademann, C.6
Cannavo, E.7
Sartori, A.A.8
Hengartner, M.O.9
Jiricny, J.10
-
21
-
-
77954286076
-
A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary forDNAinterstrand crosslink repair
-
Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, Sowa ME, Clark AB, Kunkel TA, Harper JW, Colaiacovo MP, Elledge SJ. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary forDNAinterstrand crosslink repair. Mol. Cell 39:36-47. http://dx.doi.org/10.1016/j.molcel.2010.06.023.
-
(2010)
Mol. Cell
, vol.39
, pp. 36-47
-
-
Smogorzewska, A.1
Desetty, R.2
Saito, T.T.3
Schlabach, M.4
Lach, F.P.5
Sowa, M.E.6
Clark, A.B.7
Kunkel, T.A.8
Harper, J.W.9
Colaiacovo, M.P.10
Elledge, S.J.11
-
22
-
-
77954274685
-
Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
-
MacKay C, Declais AC, Lundin C, Agostinho A, Deans AJ, MacArtney TJ, Hofmann K, Gartner A, West SC, Helleday T, Lilley DM, Rouse J. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-76. http: //dx.doi.org/10.1016/j.cell.2010.06.021.
-
(2010)
Cell
, vol.142
, pp. 65-76
-
-
MacKay, C.1
Declais, A.C.2
Lundin, C.3
Agostinho, A.4
Deans, A.J.5
MacArtney, T.J.6
Hofmann, K.7
Gartner, A.8
West, S.C.9
Helleday, T.10
Lilley, D.M.11
Rouse, J.12
-
23
-
-
34250187067
-
Cytokinesis-block micronucleus cytome assay
-
Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2:1084-1104. http://dx.doi.org/10.1038/nprot.2007.77.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 1084-1104
-
-
Fenech, M.1
-
24
-
-
84890400906
-
Helq acts in parallel to Fancc to suppress replicationassociated genome instability
-
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. 2013. Helq acts in parallel to Fancc to suppress replicationassociated genome instability. Nucleic Acids Res. 41:10283-10297. http: //dx.doi.org/10.1093/nar/gkt676.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 10283-10297
-
-
Luebben, S.W.1
Kawabata, T.2
Akre, M.K.3
Lee, W.L.4
Johnson, C.S.5
O'Sullivan, M.G.6
Shima, N.7
-
25
-
-
69849097500
-
PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination
-
Bryant HE, Petermann E, Schultz N, Jemth AS, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T. 2009. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28:2601-2615. http://dx.doi.org/10.1038 /emboj.2009.206.
-
(2009)
EMBO J
, vol.28
, pp. 2601-2615
-
-
Bryant, H.E.1
Petermann, E.2
Schultz, N.3
Jemth, A.S.4
Loseva, O.5
Issaeva, N.6
Johansson, F.7
Fernandez, S.8
McGlynn, P.9
Helleday, T.10
-
26
-
-
84902997827
-
CtIP mediates replication fork recovery in a FANCD2-regulated manner
-
Yeo JE, Lee EH, Hendrickson E, Sobeck A. 2014. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum. Mol. Genet. 23:3695-3705. http://dx.doi.org/10.1093/hmg/ddu078.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 3695-3705
-
-
Yeo, J.E.1
Lee, E.H.2
Hendrickson, E.3
Sobeck, A.4
-
27
-
-
84880440332
-
ATR phosphorylates SMARCAL1 to prevent replication fork collapse
-
Couch FB, Bansbach CE, Driscoll R, Luzwick JW, Glick GG, Betous R, Carroll CM, Jung SY, Qin J, Cimprich KA, Cortez D. 2013. ATR phosphorylates SMARCAL1 to prevent replication fork collapse. Genes Dev. 27:1610-1623. http://dx.doi.org/10.1101/gad.214080.113.
-
(2013)
Genes Dev
, vol.27
, pp. 1610-1623
-
-
Couch, F.B.1
Bansbach, C.E.2
Driscoll, R.3
Luzwick, J.W.4
Glick, G.G.5
Betous, R.6
Carroll, C.M.7
Jung, S.Y.8
Qin, J.9
Cimprich, K.A.10
Cortez, D.11
-
28
-
-
84901293712
-
A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression
-
Luebben SW, Kawabata T, Johnson CS, O'Sullivan MG, Shima N. 2014. A concomitant loss of dormant origins and FANCC exacerbates genome instability by impairing DNA replication fork progression. Nucleic Acids Res. 42:5605-5615. http://dx.doi.org/10.1093/nar/gku170.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 5605-5615
-
-
Luebben, S.W.1
Kawabata, T.2
Johnson, C.S.3
O'Sullivan, M.G.4
Shima, N.5
-
29
-
-
67349227137
-
Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
-
Chan KL, Palmai-Pallag T, Ying S, Hickson ID. 2009. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat. Cell Biol. 11:753-760. http://dx.doi.org/10.1038/ncb1882.
-
(2009)
Nat. Cell Biol.
, vol.11
, pp. 753-760
-
-
Chan, K.L.1
Palmai-Pallag, T.2
Ying, S.3
Hickson, I.D.4
-
30
-
-
79951970806
-
Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
-
Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. 2011. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell 41:543-553. http://dx.doi.org/10.1016/j.molcel.2011.02.006.
-
(2011)
Mol. Cell
, vol.41
, pp. 543-553
-
-
Kawabata, T.1
Luebben, S.W.2
Yamaguchi, S.3
Ilves, I.4
Matise, I.5
Buske, T.6
Botchan, M.R.7
Shima, N.8
-
31
-
-
84887081781
-
Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry
-
Sirbu BM, McDonald WH, Dungrawala H, Badu-Nkansah A, Kavanaugh GM, Chen Y, Tabb DL, Cortez D. 2013. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J. Biol. Chem. 288:31458- 31467. http://dx.doi.org/10.1074/jbc.M113.511337.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31458-31467
-
-
Sirbu, B.M.1
McDonald, W.H.2
Dungrawala, H.3
Badu-Nkansah, A.4
Kavanaugh, G.M.5
Chen, Y.6
Tabb, D.L.7
Cortez, D.8
-
32
-
-
72949123930
-
The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
-
Knipscheer P, Raschle M, Smogorzewska A, Enoiu M, Ho TV, Scharer OD, Elledge SJ, Walter JC. 2009. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326: 1698-1701. http://dx.doi.org/10.1126/science.1182372.
-
(2009)
Science
, vol.326
, pp. 1698-1701
-
-
Knipscheer, P.1
Raschle, M.2
Smogorzewska, A.3
Enoiu, M.4
Ho, T.V.5
Scharer, O.D.6
Elledge, S.J.7
Walter, J.C.8
-
33
-
-
51549098159
-
Mechanism of replicationcoupled DNA interstrand crosslink repair
-
Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, Griffith JD, Ellenberger TE, Scharer OD, Walter JC. 2008. Mechanism of replicationcoupled DNA interstrand crosslink repair. Cell 134:969-980. http://dx.doi.org/10.1016/j.cell.2008.08.030.
-
(2008)
Cell
, vol.134
, pp. 969-980
-
-
Raschle, M.1
Knipscheer, P.2
Enoiu, M.3
Angelov, T.4
Sun, J.5
Griffith, J.D.6
Ellenberger, T.E.7
Scharer, O.D.8
Walter, J.C.9
-
34
-
-
76849109722
-
Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair
-
Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. 2010. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37:492-502. http://dx.doi.org/10.1016/j.molcel.2010.01.021.
-
(2010)
Mol. Cell
, vol.37
, pp. 492-502
-
-
Petermann, E.1
Orta, M.L.2
Issaeva, N.3
Schultz, N.4
Helleday, T.5
-
35
-
-
78649334861
-
FANCJ/ BRIP1 recruitment and regulation of FANCD2 in DNA damage responses
-
Zhang F, Fan Q, Ren K, Auerbach AD, Andreassen PR. 2010. FANCJ/ BRIP1 recruitment and regulation of FANCD2 in DNA damage responses. Chromosoma 119:637-649. http://dx.doi.org/10.1007/s00412 -010-0285-6.
-
(2010)
Chromosoma
, vol.119
, pp. 637-649
-
-
Zhang, F.1
Fan, Q.2
Ren, K.3
Auerbach, A.D.4
Andreassen, P.R.5
-
36
-
-
70350365400
-
Functional interaction between the Fanconi anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif
-
Howlett NG, Harney JA, Rego MA, Kolling FW, IV, Glover TW. 2009. Functional interaction between the Fanconi anemia D2 protein and proliferating cell nuclear antigen (PCNA) via a conserved putative PCNA interaction motif. J. Biol. Chem. 284:28935-28942. http://dx.doi.org/10.1074/jbc.M109.016352.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 28935-28942
-
-
Howlett, N.G.1
Harney, J.A.2
Rego, M.A.3
Kolling, F.W.4
Glover, T.W.5
-
37
-
-
84883780177
-
FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling
-
Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C, Decaillet C, Gari K, Constantinou A. 2013. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol. Cell 51:678-690. http://dx.doi.org/10.1016/j.molcel.2013.07.023.
-
(2013)
Mol. Cell
, vol.51
, pp. 678-690
-
-
Lossaint, G.1
Larroque, M.2
Ribeyre, C.3
Bec, N.4
Larroque, C.5
Decaillet, C.6
Gari, K.7
Constantinou, A.8
-
38
-
-
84901853112
-
Modularized functions of the Fanconi anemia core complex
-
Huang Y, Leung JW, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J, Li L. 2014. Modularized functions of the Fanconi anemia core complex. Cell Rep. 7:1849-1857. http://dx.doi.org/10.1016/j.celrep.2014.04.029.
-
(2014)
Cell Rep
, vol.7
, pp. 1849-1857
-
-
Huang, Y.1
Leung, J.W.2
Lowery, M.3
Matsushita, N.4
Wang, Y.5
Shen, X.6
Huong, D.7
Takata, M.8
Chen, J.9
Li, L.10
-
39
-
-
84901823876
-
The genetic and biochemical basis of FANCD2 monoubiquitination
-
Rajendra E, Oestergaard VH, Langevin F, Wang M, Dornan GL, Patel KJ, Passmore LA. 2014. The genetic and biochemical basis of FANCD2 monoubiquitination. Mol. Cell 54:858-869. http://dx.doi.org/10.1016/j.molcel.2014.05.001.
-
(2014)
Mol. Cell
, vol.54
, pp. 858-869
-
-
Rajendra, E.1
Oestergaard, V.H.2
Langevin, F.3
Wang, M.4
Dornan, G.L.5
Patel, K.J.6
Passmore, L.A.7
-
40
-
-
37549072240
-
UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination
-
Alpi A, Langevin F, Mosedale G, Machida YJ, Dutta A, Patel KJ. 2007. UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol. Cell. Biol. 27:8421-8430. http://dx.doi.org/10.1128/MCB.00504-07.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8421-8430
-
-
Alpi, A.1
Langevin, F.2
Mosedale, G.3
Machida, Y.J.4
Dutta, A.5
Patel, K.J.6
-
41
-
-
55549137026
-
FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway
-
Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, Uchida E, Saberi A, Kinoshita E, Kinoshita-Kikuta E, Koike T, Tashiro S, Elledge SJ, Takata M. 2008. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15:1138-1146. http://dx.doi.org/10.1038/nsmb.1504.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1138-1146
-
-
Ishiai, M.1
Kitao, H.2
Smogorzewska, A.3
Tomida, J.4
Kinomura, A.5
Uchida, E.6
Saberi, A.7
Kinoshita, E.8
Kinoshita-Kikuta, E.9
Koike, T.10
Tashiro, S.11
Elledge, S.J.12
Takata, M.13
-
42
-
-
84866912486
-
Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase
-
Sareen A, Chaudhury I, Adams N, Sobeck A. 2012. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res. 40:8425-8439. http://dx.doi.org/10.1093/nar/gks638.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 8425-8439
-
-
Sareen, A.1
Chaudhury, I.2
Adams, N.3
Sobeck, A.4
-
43
-
-
84881439745
-
MUS81 promotes common fragile site expression
-
Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T, Mankouri HW, Liu Y, Hickson ID. 2013. MUS81 promotes common fragile site expression. Nat. Cell Biol. 15:1001-1007. http://dx.doi.org/10.1038/ncb2773.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1001-1007
-
-
Ying, S.1
Minocherhomji, S.2
Chan, K.L.3
Palmai-Pallag, T.4
Chu, W.K.5
Wass, T.6
Mankouri, H.W.7
Liu, Y.8
Hickson, I.D.9
-
44
-
-
69249216420
-
MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair
-
Roques C, Coulombe Y, Delannoy M, Vignard J, Grossi S, Brodeur I, Rodrigue A, Gautier J, Stasiak AZ, Stasiak A, Constantinou A, Masson JY. 2009. MRE11-RAD50-NBS1 is a critical regulator of FANCD2 stability and function during DNA double-strand break repair. EMBO J. 28:2400- 2413. http://dx.doi.org/10.1038/emboj.2009.193.
-
(2009)
EMBO J
, vol.28
, pp. 2400-2413
-
-
Roques, C.1
Coulombe, Y.2
Delannoy, M.3
Vignard, J.4
Grossi, S.5
Brodeur, I.6
Rodrigue, A.7
Gautier, J.8
Stasiak, A.Z.9
Stasiak, A.10
Constantinou, A.11
Masson, J.Y.12
-
45
-
-
84864413963
-
FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair
-
Zhou W, Otto EA, Cluckey A, Airik R, Hurd TW, Chaki M, Diaz K, Lach FP, Bennett GR, Gee HY, Ghosh AK, Natarajan S, Thongthip S, Veturi U, Allen SJ, Janssen S, Ramaswami G, Dixon J, Burkhalter F, Spoendlin M, Moch H, Mihatsch MJ, Verine J, Reade R, Soliman H, Godin M, Kiss D, Monga G, Mazzucco G, Amann K, Artunc F, Newland RC, Wiech T, Zschiedrich S, Huber TB, Friedl A, Slaats GG, Joles JA, Goldschmeding R, Washburn J, Giles RH, Levy S, Smogorzewska A, Hildebrandt F. 2012. FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nat. Genet. 44:910-915. http://dx.doi.org/10.1038/ng.2347.
-
(2012)
Nat. Genet.
, vol.44
, pp. 910-915
-
-
Zhou, W.1
Otto, E.A.2
Cluckey, A.3
Airik, R.4
Hurd, T.W.5
Chaki, M.6
Diaz, K.7
Lach, F.P.8
Bennett, G.R.9
Gee, H.Y.10
Ghosh, A.K.11
Natarajan, S.12
Thongthip, S.13
Veturi, U.14
Allen, S.J.15
Janssen, S.16
Ramaswami, G.17
Dixon, J.18
Burkhalter, F.19
Spoendlin, M.20
Moch, H.21
Mihatsch, M.J.22
Verine, J.23
Reade, R.24
Soliman, H.25
Godin, M.26
Kiss, D.27
Monga, G.28
Mazzucco, G.29
Amann, K.30
Artunc, F.31
Newland, R.C.32
Wiech, T.33
Zschiedrich, S.34
Huber, T.B.35
Friedl, A.36
Slaats, G.G.37
Joles, J.A.38
Goldschmeding, R.39
Washburn, J.40
Giles, R.H.41
Levy, S.42
Smogorzewska, A.43
Hildebrandt, F.44
more..
-
46
-
-
84863579727
-
On the role of FAN1 in Fanconi anemia
-
Trujillo JP, Mina LB, Pujol R, Bogliolo M, Andrieux J, Holder M, Schuster B, Schindler D, Surralles J. 2012. On the role of FAN1 in Fanconi anemia. Blood 120:86-89. http://dx.doi.org/10.1182/blood-2012-04-420604.
-
(2012)
Blood
, vol.120
, pp. 86-89
-
-
Trujillo, J.P.1
Mina, L.B.2
Pujol, R.3
Bogliolo, M.4
Andrieux, J.5
Holder, M.6
Schuster, B.7
Schindler, D.8
Surralles, J.9
-
47
-
-
34247576595
-
Hypomorphic mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 patients with severe phenotype
-
Kalb R, Neveling K, Hoehn H, Schneider H, Linka Y, Batish SD, Hunt C, Berwick M, Callen E, Surralles J, Casado JA, Bueren J, Dasi A, Soulier J, Gluckman E, Zwaan CM, van Spaendonk R, Pals G, de Winter JP, Joenje H, Grompe M, Auerbach AD, Hanenberg H, Schindler D. 2007. Hypomorphic mutations in the gene encoding a key Fanconi anemia protein, FANCD2, sustain a significant group of FA-D2 patients with severe phenotype. Am. J. Hum. Genet. 80:895-910. http://dx.doi.org/10.1086/517616.
-
(2007)
Am. J. Hum. Genet.
, vol.80
, pp. 895-910
-
-
Kalb, R.1
Neveling, K.2
Hoehn, H.3
Schneider, H.4
Linka, Y.5
Batish, S.D.6
Hunt, C.7
Berwick, M.8
Callen, E.9
Surralles, J.10
Casado, J.A.11
Bueren, J.12
Dasi, A.13
Soulier, J.14
Gluckman, E.15
Zwaan, C.M.16
van Spaendonk, R.17
Pals, G.18
de Winter, J.P.19
Joenje, H.20
Grompe, M.21
Auerbach, A.D.22
Hanenberg, H.23
Schindler, D.24
more..
-
48
-
-
58149216953
-
Fanconi anemia: causes and consequences of genetic instability
-
Kalb R, Neveling K, Nanda I, Schindler D, Hoehn H. 2006. Fanconi anemia: causes and consequences of genetic instability. Genome Dyn. 1:218-242. http://dx.doi.org/10.1159/000092510.
-
(2006)
Genome Dyn
, vol.1
, pp. 218-242
-
-
Kalb, R.1
Neveling, K.2
Nanda, I.3
Schindler, D.4
Hoehn, H.5
-
49
-
-
67349230444
-
Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging
-
Singh DK, Ahn B, Bohr VA. 2009. Roles of RECQ helicases in recombination based DNA repair, genomic stability and aging. Biogerontology 10:235-252. http://dx.doi.org/10.1007/s10522-008-9205-z.
-
(2009)
Biogerontology
, vol.10
, pp. 235-252
-
-
Singh, D.K.1
Ahn, B.2
Bohr, V.A.3
-
50
-
-
0032085295
-
The 3= to 5= exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks
-
Paull TT, Gellert M. 1998. The 3= to 5= exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1:969-979. http: //dx.doi.org/10.1016/S1097-2765(00)80097-0.
-
(1998)
Mol. Cell
, vol.1
, pp. 969-979
-
-
Paull, T.T.1
Gellert, M.2
-
51
-
-
84892369333
-
DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities
-
Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM, Maity R, van Rossum-Fikkert S, Kertokalio A, Romoli F, Ismail A, Ismalaj E, Petricci E, Neale MJ, Bristow RG, Masson JY, Wyman C, Jeggo PA, Tainer JA. 2014. DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activities. Mol. Cell 53:7-18. http://dx.doi.org/10.1016/j.molcel.2013.11.003.
-
(2014)
Mol. Cell
, vol.53
, pp. 7-18
-
-
Shibata, A.1
Moiani, D.2
Arvai, A.S.3
Perry, J.4
Harding, S.M.5
Genois, M.M.6
Maity, R.7
van Rossum-Fikkert, S.8
Kertokalio, A.9
Romoli, F.10
Ismail, A.11
Ismalaj, E.12
Petricci, E.13
Neale, M.J.14
Bristow, R.G.15
Masson, J.Y.16
Wyman, C.17
Jeggo, P.A.18
Tainer, J.A.19
-
52
-
-
78951474460
-
The MRE11 complex: starting from the ends
-
Stracker TH, Petrini JH. 2011. The MRE11 complex: starting from the ends. Nat. Rev. Mol. Cell Biol. 12:90 -103. http://dx.doi.org/10.1038 /nrm3047.
-
(2011)
Nat. Rev. Mol. Cell Biol
, vol.12
, pp. 90-103
-
-
Stracker, T.H.1
Petrini, J.H.2
|