메뉴 건너뛰기




Volumn 58, Issue , 2014, Pages 363-374

Transducer invariant multi-class fault classification in a rotor-bearing system using support vector machines

Author keywords

Bearing; Fault classification; Speed; Unbalance; Vibration

Indexed keywords

BEARINGS (STRUCTURAL); SPEED; SUPPORT VECTOR MACHINES; TIME DOMAIN ANALYSIS; TRANSDUCERS;

EID: 84907811430     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2014.08.042     Document Type: Article
Times cited : (31)

References (25)
  • 1
    • 36048939640 scopus 로고    scopus 로고
    • New clustering algorithm-based fault diagnosis using compensation distance evaluation technique
    • Y. Lei, Z. He, Z. Yanyang, and X. Chen New clustering algorithm-based fault diagnosis using compensation distance evaluation technique Mech. Syst. Signal Process. 22 2 2008 419 435
    • (2008) Mech. Syst. Signal Process. , vol.22 , Issue.2 , pp. 419-435
    • Lei, Y.1    He, Z.2    Yanyang, Z.3    Chen, X.4
  • 2
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, and K. Ramachandran Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing Mech. Syst. Signal Process. 21 2 2007 930 942
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 3
    • 10244259183 scopus 로고    scopus 로고
    • PCA-based feature selection scheme for machine defect classification
    • A. Malhi, and R.X. Gao PCA-based feature selection scheme for machine defect classification IEEE Trans. Instrum. Meas. 53 6 2004 1517 1525
    • (2004) IEEE Trans. Instrum. Meas. , vol.53 , Issue.6 , pp. 1517-1525
    • Malhi, A.1    Gao, R.X.2
  • 5
    • 84883391283 scopus 로고    scopus 로고
    • Technique for optical placement of transducers for fault detection in rotating machines
    • S. Fatima, A.R. Mohanty, S.G. Dastidar, and V.N.A. Naikan Technique for optical placement of transducers for fault detection in rotating machines J. Risk Reliab. 227 2 2013 119 131
    • (2013) J. Risk Reliab. , vol.227 , Issue.2 , pp. 119-131
    • Fatima, S.1    Mohanty, A.R.2    Dastidar, S.G.3    Naikan, V.N.A.4
  • 6
    • 84891687780 scopus 로고    scopus 로고
    • Global geometric similarity scheme for feature selection in fault diagnosis
    • C. Liu, D. Jiang, and W. Yang Global geometric similarity scheme for feature selection in fault diagnosis Expert Syst. Appl. 41 2014 3585 3595
    • (2014) Expert Syst. Appl. , vol.41 , pp. 3585-3595
    • Liu, C.1    Jiang, D.2    Yang, W.3
  • 7
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, and B.S. Yang Support vector machine in machine condition monitoring and fault diagnosis Mech. Syst. Signal Process. 21 2007 2560 2574
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 9
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • L.B. Jack, and A.K. Nandi Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms Mech. Syst. Signal Process. 16 2-3 2002 373 390
    • (2002) Mech. Syst. Signal Process. , vol.16 , Issue.23 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 11
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mech. Syst. Signal Process. 18 2004 625 644
    • (2004) Mech. Syst. Signal Process. , vol.18 , pp. 625-644
    • Samanta, B.1
  • 12
    • 84896505268 scopus 로고    scopus 로고
    • Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms
    • D.J. Bordoloi, and R. Tiwari Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms Mech. Mach. Theory 73 2014 49 60
    • (2014) Mech. Mach. Theory , vol.73 , pp. 49-60
    • Bordoloi, D.J.1    Tiwari, R.2
  • 13
    • 84870249587 scopus 로고    scopus 로고
    • A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm
    • F. Chen, B. Tang, and R. Chen A novel fault diagnosis model for gearbox based on wavelet support vector machine with immune genetic algorithm Measurements 46 2013 220 232
    • (2013) Measurements , vol.46 , pp. 220-232
    • Chen, F.1    Tang, B.2    Chen, R.3
  • 14
    • 0035153670 scopus 로고    scopus 로고
    • Support vector machine for detection and characterization of rolling element bearing faults
    • L.B. Jack, and A.K. Nandi Support vector machine for detection and characterization of rolling element bearing faults J. Mech. Eng. Sci. 215 2001 1065 1074
    • (2001) J. Mech. Eng. Sci. , vol.215 , pp. 1065-1074
    • Jack, L.B.1    Nandi, A.K.2
  • 15
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural network and support vector machines with genetic algorithms for bearing fault detection
    • B. Samanta, K.R.A. Balushi, and S.A.A. Araimi Artificial neural network and support vector machines with genetic algorithms for bearing fault detection Eng. Appl. Artificial Intelligence 16 2003 657 665
    • (2003) Eng. Appl. Artificial Intelligence , vol.16 , pp. 657-665
    • Samanta, B.1    Balushi, K.R.A.2    Araimi, S.A.A.3
  • 16
    • 38649135047 scopus 로고    scopus 로고
    • Fault diagnosis of roller bearing using kernel based neighborhood score multi-class support vector machine
    • V. Sugumaran, G.R. Sabareesh, and K.I. Ramachandran Fault diagnosis of roller bearing using kernel based neighborhood score multi-class support vector machine Expert Syst. Appl. 34 2008 3090 3098
    • (2008) Expert Syst. Appl. , vol.34 , pp. 3090-3098
    • Sugumaran, V.1    Sabareesh, G.R.2    Ramachandran, K.I.3
  • 17
    • 84855783889 scopus 로고    scopus 로고
    • A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments
    • K.C. Gryllias, and I.A. Antoniadis A support vector machine approach based on physical model training for rolling element bearing fault detection in industrial environments Eng. Appl. Artificial Intelligence 25 2012 326 344
    • (2012) Eng. Appl. Artificial Intelligence , vol.25 , pp. 326-344
    • Gryllias, K.C.1    Antoniadis, I.A.2
  • 18
    • 69249153422 scopus 로고    scopus 로고
    • Rolling bearing fault classification based on envelope spectrum and support vector machine
    • L. Guo, J. Chen, and X. Li Rolling bearing fault classification based on envelope spectrum and support vector machine J. Vib. Control 15 9 2009 1349 1363
    • (2009) J. Vib. Control , vol.15 , Issue.9 , pp. 1349-1363
    • Guo, L.1    Chen, J.2    Li, X.3
  • 19
    • 84859433868 scopus 로고    scopus 로고
    • Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine
    • Y. Wang, S. Kang, Y. Jiang, G. Yang, L. Song, and V.I. Mikulovich Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine Mech. Syst. Signal Process. 29 2012 404 414
    • (2012) Mech. Syst. Signal Process. , vol.29 , pp. 404-414
    • Wang, Y.1    Kang, S.2    Jiang, Y.3    Yang, G.4    Song, L.5    Mikulovich, V.I.6
  • 20
    • 84885611750 scopus 로고    scopus 로고
    • Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines
    • X. Zhang, and J. Zhou Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines Mech. Syst. Signal Process. 41 2013 127 140
    • (2013) Mech. Syst. Signal Process. , vol.41 , pp. 127-140
    • Zhang, X.1    Zhou, J.2
  • 21
    • 84867863746 scopus 로고    scopus 로고
    • Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
    • Z. Liu, H. Cao, X. Chen, Z. He, and Z. Shen Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings Neurocomputing 99 2013 399 410
    • (2013) Neurocomputing , vol.99 , pp. 399-410
    • Liu, Z.1    Cao, H.2    Chen, X.3    He, Z.4    Shen, Z.5
  • 22
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • Q. Hu, Z. He, Z. Zhang, and Z. Yanyang Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble Mech. Syst. Signal Process. 21 2007 688 705
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Yanyang, Z.4
  • 23
    • 34548035641 scopus 로고    scopus 로고
    • Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine
    • S. Abbasion, A. Rafsanjani, A. Farshidianfar, and N. Irani Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine Mech. Syst. Signal Process. 21 2007 2933 2945
    • (2007) Mech. Syst. Signal Process. , vol.21 , pp. 2933-2945
    • Abbasion, S.1    Rafsanjani, A.2    Farshidianfar, A.3    Irani, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.