메뉴 건너뛰기




Volumn 17, Issue 4, 2014, Pages 372-411

Missing Data: Five Practical Guidelines

Author keywords

EM algorithm; full information maximum likelihood (FIML); missing data; multiple imputation; R syntax R code

Indexed keywords


EID: 84907542751     PISSN: 10944281     EISSN: 15527425     Source Type: Journal    
DOI: 10.1177/1094428114548590     Document Type: Article
Times cited : (908)

References (56)
  • 1
    • 0004093524 scopus 로고    scopus 로고
    • Thousand Oaks, CA: ; :, Sage
    • Allison P. D.Missing data. Thousand Oaks, CA: Sage; 2002:
    • (2002) Missing data
    • Allison, P.D.1
  • 2
    • 77955097227 scopus 로고    scopus 로고
    • Response rates in organizational science, 1995-2008: A meta-analytic review and guidelines for survey researchers
    • Anseel F.,Lievens F.,Schollaert E.,Choragwicka B.Response rates in organizational science, 1995-2008: A meta-analytic review and guidelines for survey researchers.Journal of Business and Psychology. 2010;25:335-349
    • (2010) Journal of Business and Psychology , vol.25 , pp. 335-349
    • Anseel, F.1    Lievens, F.2    Schollaert, E.3    Choragwicka, B.4
  • 3
    • 0034195071 scopus 로고    scopus 로고
    • Development of a measure of workplace deviance
    • Bennett R. J.,Robinson S. L.Development of a measure of workplace deviance.Journal of Applied Psychology. 2000;85 ((3)): 349-360
    • (2000) Journal of Applied Psychology , vol.85 , Issue.3 , pp. 349-360
    • Bennett, R.J.1    Robinson, S.L.2
  • 4
    • 0034408110 scopus 로고    scopus 로고
    • Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable
    • Bernaards C. A.,Sijtsma K.Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable.Multivariate Behavioral Research. 2000;35 ((3)): 321-364
    • (2000) Multivariate Behavioral Research , vol.35 , Issue.3 , pp. 321-364
    • Bernaards, C.A.1    Sijtsma, K.2
  • 5
    • 85047681553 scopus 로고    scopus 로고
    • Implications of empirical Bayes meta-analysis for test validation
    • Brannick M. T.Implications of empirical Bayes meta-analysis for test validation.Journal of Applied Psychology. 2001;86:468-480
    • (2001) Journal of Applied Psychology , vol.86 , pp. 468-480
    • Brannick, M.T.1
  • 6
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins L. M.,Schafer J. L.,Kam C. M.A comparison of inclusive and restrictive strategies in modern missing data procedures.Psychological Methods. 2001;6:330-351
    • (2001) Psychological Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.M.3
  • 7
    • 33745210543 scopus 로고    scopus 로고
    • What (not) to expect when surveying executives a meta-analysis of top manager response rates and techniques over time
    • Cycyota C. S.,Harrison D. A.What (not) to expect when surveying executives a meta-analysis of top manager response rates and techniques over time.Organizational Research Methods. 2006;9 ((2)): 133-160
    • (2006) Organizational Research Methods , vol.9 , Issue.2 , pp. 133-160
    • Cycyota, C.S.1    Harrison, D.A.2
  • 10
    • 0032035161 scopus 로고    scopus 로고
    • Missing data in Likert ratings: A comparison of replacement methods
    • Downey R. G.,King C. V.Missing data in Likert ratings: A comparison of replacement methods.The Journal of General Psychology. 1998;125 ((2)): 175-191
    • (1998) The Journal of General Psychology , vol.125 , Issue.2 , pp. 175-191
    • Downey, R.G.1    King, C.V.2
  • 11
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
    • Enders C. K.The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data.Psychological Methods. 2001a;6:352-370
    • (2001) Psychological Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 12
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms for use with missing data
    • Enders C. K.A primer on maximum likelihood algorithms for use with missing data.Structural Equation Modeling. 2001b;8:128-141
    • (2001) Structural Equation Modeling , vol.8 , pp. 128-141
    • Enders, C.K.1
  • 14
    • 84897939402 scopus 로고    scopus 로고
    • Estimating interaction effects with incomplete predictor variables
    • Enders C. K.,Baraldi A. N.,Cham H.Estimating interaction effects with incomplete predictor variables.Psychological Methods. 2014;19:39-55
    • (2014) Psychological Methods , vol.19 , pp. 39-55
    • Enders, C.K.1    Baraldi, A.N.2    Cham, H.3
  • 15
    • 2642541763 scopus 로고    scopus 로고
    • Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences
    • Enders C. K.,Peugh J. L.Using an EM covariance matrix to estimate structural equation models with missing data: Choosing an adjusted sample size to improve the accuracy of inferences.Structural Equation Modeling. 2004;11:1-19
    • (2004) Structural Equation Modeling , vol.11 , pp. 1-19
    • Enders, C.K.1    Peugh, J.L.2
  • 16
    • 0001581342 scopus 로고
    • Estimation for the multiple factor model when data are missing
    • Finkbeiner C.Estimation for the multiple factor model when data are missing.Psychometrika. 1979;44 ((4)): 409-420
    • (1979) Psychometrika , vol.44 , Issue.4 , pp. 409-420
    • Finkbeiner, C.1
  • 17
    • 85053970271 scopus 로고    scopus 로고
    • ,,,,,. 2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: Taylor & Francis.Boca Raton, FL: ; :, Taylor & Francis
    • Gelman A.,Carlin J. B.,Stern H. S.,Dunson D. B.,Vehtari A.,Rubin D. B.Bayesian data analysis. (2013). Bayesian data analysis (3rd ed.). Boca Raton, FL: Taylor & Francis.Boca Raton, FL: Taylor & Francis; 2013:
    • (2013) Bayesian data analysis
    • Gelman, A.1    Carlin, J.B.2    Stern, H.S.3    Dunson, D.B.4    Vehtari, A.5    Rubin, D.B.6
  • 19
    • 0000497010 scopus 로고    scopus 로고
    • Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization
    • Gold M. S.,Bentler P. M.Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization.Structural Equation Modeling. 2000;7:319-355
    • (2000) Structural Equation Modeling , vol.7 , pp. 319-355
    • Gold, M.S.1    Bentler, P.M.2
  • 20
    • 3042829565 scopus 로고    scopus 로고
    • A comparison of maximum-likelihood and asymptotically distribution-free methods of treating incomplete nonnormal data
    • Gold M. S.,Bentler P. M.,Kim K. H.A comparison of maximum-likelihood and asymptotically distribution-free methods of treating incomplete nonnormal data.Structural Equation Modeling. 2003;10:47-79
    • (2003) Structural Equation Modeling , vol.10 , pp. 47-79
    • Gold, M.S.1    Bentler, P.M.2    Kim, K.H.3
  • 21
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • Graham J. W.Adding missing-data-relevant variables to FIML-based structural equation models.Structural Equation Modeling. 2003;10:80-100
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 22
    • 60549085055 scopus 로고    scopus 로고
    • Missing data analysis: Making it work in the real world
    • Graham J. W.Missing data analysis: Making it work in the real world.Annual Review of Psychology. 2009;60:549-576
    • (2009) Annual Review of Psychology , vol.60 , pp. 549-576
    • Graham, J.W.1
  • 23
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham J. W.,Olchowski A. E.,Gilreath T. D.How many imputations are really needed? Some practical clarifications of multiple imputation theory.Prevention Science. 2007;8 ((3)): 206-213
    • (2007) Prevention Science , vol.8 , Issue.3 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 26
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman J. T.Sample selection bias as a specification error.Econometrica. 1979;47:153-161
    • (1979) Econometrica , vol.47 , pp. 153-161
    • Heckman, J.T.1
  • 29
    • 85101444608 scopus 로고    scopus 로고
    • 2002). Statistical analysis with missing data (2nd ed.). New York, NY: Wiley.New York, NY: ; :, Wiley
    • Little R. J. A.,Rubin D. B.Statistical analysis with missing data. (2002). Statistical analysis with missing data (2nd ed.). New York, NY: Wiley.New York, NY: Wiley; 2002:
    • (2002) Statistical analysis with missing data
    • Little, R.J.A.1    Rubin, D.B.2
  • 30
    • 0040731105 scopus 로고    scopus 로고
    • Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes
    • Marsh H. W.Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes.Structural Equation Modeling. 1998;5:22-36
    • (1998) Structural Equation Modeling , vol.5 , pp. 22-36
    • Marsh, H.W.1
  • 34
    • 0038009574 scopus 로고    scopus 로고
    • Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques
    • Newman D. A.Longitudinal modeling with randomly and systematically missing data: A simulation of ad hoc, maximum likelihood, and multiple imputation techniques.Organizational Research Methods. 2003;6:328-362
    • (2003) Organizational Research Methods , vol.6 , pp. 328-362
    • Newman, D.A.1
  • 37
    • 34748826719 scopus 로고    scopus 로고
    • Choosing the best method for local validity estimation: Relative accuracy of meta-analysis versus a local study versus Bayes-analysis
    • Newman D. A.,Jacobs R. R.,Bartram D.Choosing the best method for local validity estimation: Relative accuracy of meta-analysis versus a local study versus Bayes-analysis.Journal of Applied Psychology. 2007;92:1394-1413
    • (2007) Journal of Applied Psychology , vol.92 , pp. 1394-1413
    • Newman, D.A.1    Jacobs, R.R.2    Bartram, D.3
  • 38
    • 57849156249 scopus 로고    scopus 로고
    • How do missing data bias estimates of within-group agreement? Sensitivity of SDWG, CVWG, rWG(J), rWG(J)*, and ICC to systematic nonresponse
    • Newman D. A.,Sin H. P.How do missing data bias estimates of within-group agreement? Sensitivity of SDWG, CVWG, rWG(J), rWG(J)*, and ICC to systematic nonresponse.Organizational Research Methods. 2009;12:113-147
    • (2009) Organizational Research Methods , vol.12 , pp. 113-147
    • Newman, D.A.1    Sin, H.P.2
  • 39
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh J. L.,Enders C. K.Missing data in educational research: A review of reporting practices and suggestions for improvement.Review of Educational Research. 2004;74:525-556
    • (2004) Review of Educational Research , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 40
    • 0034009792 scopus 로고    scopus 로고
    • The Heckman correction for sample selection and its critique
    • Puhani P. A.The Heckman correction for sample selection and its critique.Journal of Economic Surveys. 2000;14:53-67
    • (2000) Journal of Economic Surveys , vol.14 , pp. 53-67
    • Puhani, P.A.1
  • 42
    • 0028439930 scopus 로고
    • Science and ethics in conducting, analyzing, and reporting psychological research
    • Rosenthal R.Science and ethics in conducting, analyzing, and reporting psychological research.Psychological Science. 1994;5 ((3)): 127-134
    • (1994) Psychological Science , vol.5 , Issue.3 , pp. 127-134
    • Rosenthal, R.1
  • 43
    • 0032325026 scopus 로고    scopus 로고
    • Response rates in HRM/OB survey research: Norms and correlates, 1990-1994
    • Roth P. L.,BeVier C. A.Response rates in HRM/OB survey research: Norms and correlates, 1990-1994.Journal of Management. 1998;24:97-117
    • (1998) Journal of Management , vol.24 , pp. 97-117
    • Roth, P.L.1    BeVier, C.A.2
  • 44
    • 0000503114 scopus 로고    scopus 로고
    • Missing data in multiple item scales: A Monte Carlo analysis of missing data techniques
    • Roth P. L.,Switzer F. S.,Switzer D. M.Missing data in multiple item scales: A Monte Carlo analysis of missing data techniques.Organizational Research Methods. 1999;2:211-232
    • (1999) Organizational Research Methods , vol.2 , pp. 211-232
    • Roth, P.L.1    Switzer, F.S.2    Switzer, D.M.3
  • 45
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D. B.Inference and missing data.Biometrika. 1976;63:581-592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 47
    • 70449595827 scopus 로고    scopus 로고
    • A two-stage approach to missing data: Theory and application to auxiliary variables
    • Savalei V.,Bentler P. M.A two-stage approach to missing data: Theory and application to auxiliary variables.Structural Equation Modeling. 2009;16 ((3)): 477-497
    • (2009) Structural Equation Modeling , vol.16 , Issue.3 , pp. 477-497
    • Savalei, V.1    Bentler, P.M.2
  • 49
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer J. L.,Graham J. W.Missing data: Our view of the state of the art.Psychological Methods. 2002;7:147-177
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 52
    • 0032342705 scopus 로고    scopus 로고
    • Systematic data loss in HRM settings: A Monte Carlo analysis
    • Switzer F. S.,Roth P. L.,Switzer D. M.Systematic data loss in HRM settings: A Monte Carlo analysis.Journal of Management. 1998;24:763-779
    • (1998) Journal of Management , vol.24 , pp. 763-779
    • Switzer, F.S.1    Roth, P.L.2    Switzer, D.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.