메뉴 건너뛰기




Volumn 6, Issue 3, 2003, Pages 328-362

Longitudinal Modeling with Randomly and Systematically Missing Data: A Simulation of Ad Hoc, Maximum Likelihood, and Multiple Imputation Techniques

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0038009574     PISSN: 10944281     EISSN: None     Source Type: Journal    
DOI: 10.1177/1094428103254673     Document Type: Article
Times cited : (492)

References (50)
  • 1
    • 85011600107 scopus 로고
    • Group homogeneity, range restriction, and range enhancement effects on correlations
    • Alexander, R. A. (1988). Group homogeneity, range restriction, and range enhancement effects on correlations. Personnel Psychology, 41(4), 773-777.
    • (1988) Personnel Psychology , vol.41 , Issue.4 , pp. 773-777
    • Alexander, R.A.1
  • 2
    • 85004912615 scopus 로고
    • Toward a general model of nonrandom sampling and the impact of population correlations: Generalizations of Berkson's Fallacy and restriction of range
    • Alexander, R. A., Barrett, G. V., Alliger, G. M., & Carson, K. P. (1986). Toward a general model of nonrandom sampling and the impact of population correlations: Generalizations of Berkson's Fallacy and restriction of range. British Journal of Mathematical and Statistical Psychology, 39, 90-105.
    • (1986) British Journal of Mathematical and Statistical Psychology , vol.39 , pp. 90-105
    • Alexander, R.A.1    Barrett, G.V.2    Alliger, G.M.3    Carson, K.P.4
  • 3
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • C. C. Clogg (Ed.). Washington, DC: American Sociological Association
    • Allison, P. D. (1987). Estimation of linear models with incomplete data. In C. C. Clogg (Ed.), Sociological methodology (pp. 71-103). Washington, DC: American Sociological Association.
    • (1987) Sociological Methodology , pp. 71-103
    • Allison, P.D.1
  • 4
    • 0004093524 scopus 로고    scopus 로고
    • (Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-136). Thousand Oaks, CA: Sage
    • Allison, P. D. (2002). Missing data (Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-136). Thousand Oaks, CA: Sage.
    • (2002) Missing Data
    • Allison, P.D.1
  • 5
    • 21144459986 scopus 로고
    • Assumptions about unmeasured variables with studies of reciprocal relationships: The case of employee attitudes
    • Anderson, S. E., & Williams, L. J. (1992). Assumptions about unmeasured variables with studies of reciprocal relationships: The case of employee attitudes. Journal of Applied Psychology, 77(5), 638-650.
    • (1992) Journal of Applied Psychology , vol.77 , Issue.5 , pp. 638-650
    • Anderson, S.E.1    Williams, L.J.2
  • 7
    • 0021399805 scopus 로고
    • A longitudinal analysis of the antecedents of organizational commitment
    • Bateman, T. S., & Strasser, S. (1984). A longitudinal analysis of the antecedents of organizational commitment. Academy of Management Journal, 27, 95-112.
    • (1984) Academy of Management Journal , vol.27 , pp. 95-112
    • Bateman, T.S.1    Strasser, S.2
  • 8
    • 84970639656 scopus 로고
    • Feedback-seeking behavior of new hires and job changers
    • Brett, J. M., Feldman, D. C., & Weingart, L. R. (1990). Feedback-seeking behavior of new hires and job changers. Journal of Management, 16(4), 737-749.
    • (1990) Journal of Management , vol.16 , Issue.4 , pp. 737-749
    • Brett, J.M.1    Feldman, D.C.2    Weingart, L.R.3
  • 9
    • 0001557972 scopus 로고    scopus 로고
    • The conceptualization and analysis of change over time: An integrated approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM)
    • Chan, D. (1998). The conceptualization and analysis of change over time: An integrated approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421-483.
    • (1998) Organizational Research Methods , vol.1 , pp. 421-483
    • Chan, D.1
  • 10
    • 0034164079 scopus 로고    scopus 로고
    • Interindividual differences in intraindividual changes in proactivity during organizational entry: A latent growth modeling approach to understanding newcomer adaptation
    • Chan, D., & Schmitt, N. (2000). Interindividual differences in intraindividual changes in proactivity during organizational entry: A latent growth modeling approach to understanding newcomer adaptation. Journal of Applied Psychology, 85(2), 190-210.
    • (2000) Journal of Applied Psychology , vol.85 , Issue.2 , pp. 190-210
    • Chan, D.1    Schmitt, N.2
  • 11
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins, L. M., Schafer, J. L., & Kam, C. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330-351.
    • (2001) Psychological Methods , vol.6 , Issue.4 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.3
  • 13
    • 0004928597 scopus 로고    scopus 로고
    • A comparison of model- and multiple-imputation-based approaches to longitudinal analyses with partial missingness
    • Duncan, T. E., Duncan, S. C., & Li, F. (1998). A comparison of model- and multiple-imputation-based approaches to longitudinal analyses with partial missingness. Structural Equation Modeling, 5, 1-21.
    • (1998) Structural Equation Modeling , vol.5 , pp. 1-21
    • Duncan, T.E.1    Duncan, S.C.2    Li, F.3
  • 14
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms for use with missing data
    • Enders, C. K. (2001). A primer on maximum likelihood algorithms for use with missing data. Structural Equation Modeling, 8(1), 128-141.
    • (2001) Structural Equation Modeling , vol.8 , Issue.1 , pp. 128-141
    • Enders, C.K.1
  • 15
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders, C. K., & Bandalos, D. L. (2001). The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling, 8(3), 430-457.
    • (2001) Structural Equation Modeling , vol.8 , Issue.3 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 16
    • 58149366277 scopus 로고
    • A three-wave longitudinal analysis of the causal ordering of satisfaction and commitment on turnover decisions
    • Farkas, A. J., & Tetrick, L. E. (1989). A three-wave longitudinal analysis of the causal ordering of satisfaction and commitment on turnover decisions. Journal of Applied Psychology, 74(6), 855-868.
    • (1989) Journal of Applied Psychology , vol.74 , Issue.6 , pp. 855-868
    • Farkas, A.J.1    Tetrick, L.E.2
  • 17
    • 0001581342 scopus 로고
    • Estimation for the multiple group factor model when data are missing
    • Finkbeiner, C. (1979). Estimation for the multiple group factor model when data are missing. Psychometrika, 44, 409-420.
    • (1979) Psychometrika , vol.44 , pp. 409-420
    • Finkbeiner, C.1
  • 18
    • 0000336878 scopus 로고
    • A longitudinal test of a model of the antecedents and consequences of union loyalty
    • Fullagar, C., & Barling, J. (1989). A longitudinal test of a model of the antecedents and consequences of union loyalty. Journal of Applied Psychology, 74, 213-227.
    • (1989) Journal of Applied Psychology , vol.74 , pp. 213-227
    • Fullagar, C.1    Barling, J.2
  • 19
    • 0034195079 scopus 로고    scopus 로고
    • The temporal factor of change in stressor-strain relationships: A growth curve model on a longitudinal study in East Germany
    • Garst, H., Frese, M., & Molenaar, P. C. M. (2000). The temporal factor of change in stressor-strain relationships: A growth curve model on a longitudinal study in East Germany. Journal of Applied Psychology, 85(3), 417-438.
    • (2000) Journal of Applied Psychology , vol.85 , Issue.3 , pp. 417-438
    • Garst, H.1    Frese, M.2    Molenaar, P.C.M.3
  • 20
    • 0000497010 scopus 로고    scopus 로고
    • Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization
    • Gold, M. S., & Bentler, P. M. (2000). Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization. Structural Equation Modeling, 7(3), 319-355.
    • (2000) Structural Equation Modeling , vol.7 , Issue.3 , pp. 319-355
    • Gold, M.S.1    Bentler, P.M.2
  • 21
    • 0030521550 scopus 로고    scopus 로고
    • Assessing the non-random sampling effects of subject attrition in longitudinal research
    • Goodman, J. S., & Blum, T. C. (1996). Assessing the non-random sampling effects of subject attrition in longitudinal research. Journal of Management, 22(4), 627-652.
    • (1996) Journal of Management , vol.22 , Issue.4 , pp. 627-652
    • Goodman, J.S.1    Blum, T.C.2
  • 22
    • 0039199517 scopus 로고
    • On the problem of missing data in linear models
    • Gourieroux, C., & Monfort, A. (1981). On the problem of missing data in linear models. Review of Economics Studies, 48, 579-586.
    • (1981) Review of Economics Studies , vol.48 , pp. 579-586
    • Gourieroux, C.1    Monfort, A.2
  • 23
    • 85039539957 scopus 로고    scopus 로고
    • Adding missing-data-relevant variables to FIML-based structural equation models
    • in press
    • Graham, J. W. (in press). Adding missing-data-relevant variables to FIML-based structural equation models. Structural Equation Modeling.
    • Structural Equation Modeling
    • Graham, J.W.1
  • 24
    • 0027546329 scopus 로고
    • Evaluating interventions with differential attrition: The importance of nonresponse mechanisms and use of follow-up data
    • Graham, J. W., & Donaldson, S. W. (1993). Evaluating interventions with differential attrition: The importance of nonresponse mechanisms and use of follow-up data. Journal of Applied Psychology, 78, 119-128.
    • (1993) Journal of Applied Psychology , vol.78 , pp. 119-128
    • Graham, J.W.1    Donaldson, S.W.2
  • 25
    • 0000996385 scopus 로고
    • The analysis of incomplete data
    • Hartley, H. O., & Hocking, R. R. (1971). The analysis of incomplete data. Biometrics, 27, 783-823.
    • (1971) Biometrics , vol.27 , pp. 783-823
    • Hartley, H.O.1    Hocking, R.R.2
  • 26
    • 0033441842 scopus 로고    scopus 로고
    • ML estimation of mean and covariance structures with missing data using complete data routines
    • Jamshidian, M., & Bentler, P. M. (1999). ML estimation of mean and covariance structures with missing data using complete data routines. Journal of Educational and Behavioral Statistics, 24(1), 21-41.
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , Issue.1 , pp. 21-41
    • Jamshidian, M.1    Bentler, P.M.2
  • 29
    • 84970352416 scopus 로고
    • The treatment of missing data in multivariate analysis
    • Kim, J. O., & Curry, J. (1977). The treatment of missing data in multivariate analysis. Sociological Methods and Research, 6, 215-240.
    • (1977) Sociological Methods and Research , vol.6 , pp. 215-240
    • Kim, J.O.1    Curry, J.2
  • 31
    • 0005921941 scopus 로고
    • Estimation for structural equation models with missing data
    • Lee, S. Y. (1986). Estimation for structural equation models with missing data. Psychometrika, 45, 309-324.
    • (1986) Psychometrika , vol.45 , pp. 309-324
    • Lee, S.Y.1
  • 33
    • 70350088268 scopus 로고
    • Maximum likelihood estimation in panel studies with missing data
    • K. F. Schuessler (Ed.). San Francisco: Jossey-Bass
    • Marini, M. M., Olsen, A. R., & Rubin, D. B. (1980). Maximum likelihood estimation in panel studies with missing data. In K. F. Schuessler (Ed.), Sociological methodology (pp. 314-357). San Francisco: Jossey-Bass.
    • (1980) Sociological Methodology , pp. 314-357
    • Marini, M.M.1    Olsen, A.R.2    Rubin, D.B.3
  • 34
    • 0040731105 scopus 로고    scopus 로고
    • Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes
    • Marsh, H. W. (1998). Pairwise deletion for missing data in structural equation models: Nonpositive definite matrices, parameter estimates, goodness of fit, and adjusted sample sizes. Structural Equation Modeling, 5, 22-36.
    • (1998) Structural Equation Modeling , vol.5 , pp. 22-36
    • Marsh, H.W.1
  • 35
    • 0026497615 scopus 로고
    • Modeling incomplete longitudinal and cross-sectional data using latent growth structural models
    • McArdle, J. J., & Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research, 18, 145-166.
    • (1992) Experimental Aging Research , vol.18 , pp. 145-166
    • McArdle, J.J.1    Hamagami, F.2
  • 36
    • 84965742249 scopus 로고
    • Development of organizational commitment during the first year of employment: A longitudinal study of pre- and post-entry influences
    • Meyer, J. P., Bobocel, D., & Allen, N. J. (1991). Development of organizational commitment during the first year of employment: A longitudinal study of pre- and post-entry influences. Journal of Management, 17(4), 717-733.
    • (1991) Journal of Management , vol.17 , Issue.4 , pp. 717-733
    • Meyer, J.P.1    Bobocel, D.2    Allen, N.J.3
  • 37
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthen, B., Kaplan, D., & Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika, 52, 431-462.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthen, B.1    Kaplan, D.2    Hollis, M.3
  • 39
    • 0000373192 scopus 로고
    • Organizational commitment, job satisfaction, and turnover among psychiatric technicians
    • Porter, L. W., Steers, R. M., Mowday, R. T., & Boulian, P. V. (1974). Organizational commitment, job satisfaction, and turnover among psychiatric technicians. Journal of Applied Psychology, 59, 603-609.
    • (1974) Journal of Applied Psychology , vol.59 , pp. 603-609
    • Porter, L.W.1    Steers, R.M.2    Mowday, R.T.3    Boulian, P.V.4
  • 40
    • 0002288950 scopus 로고
    • A comparison of methods for treating incomplete data in selection research
    • Raymond, M. R., & Roberts, D. M. (1987). A comparison of methods for treating incomplete data in selection research. Educational and Psychological Measurement, 47, 13-26.
    • (1987) Educational and Psychological Measurement , vol.47 , pp. 13-26
    • Raymond, M.R.1    Roberts, D.M.2
  • 41
    • 0034164087 scopus 로고    scopus 로고
    • Employee attitude surveys: Examining the attitudes of noncompliant employees
    • Rogelberg, S. G., Luong, A., Sederburg, M. E., & Cristol, D. S. (2000). Employee attitude surveys: Examining the attitudes of noncompliant employees. Journal of Applied Psychology, 82(2), 284-293.
    • (2000) Journal of Applied Psychology , vol.82 , Issue.2 , pp. 284-293
    • Rogelberg, S.G.1    Luong, A.2    Sederburg, M.E.3    Cristol, D.S.4
  • 42
    • 21844483562 scopus 로고
    • Missing data: A conceptual review for applied psychologists
    • Roth, P. L. (1994). Missing data: A conceptual review for applied psychologists. Personnel Psychology, 47(3), 537-560.
    • (1994) Personnel Psychology , vol.47 , Issue.3 , pp. 537-560
    • Roth, P.L.1
  • 43
    • 0001523948 scopus 로고
    • A Monte Carlo analysis of missing data techniques in an HRM setting
    • Roth, P. L., & Switzer, F. S., III. (1995). A Monte Carlo analysis of missing data techniques in an HRM setting. Journal of Management, 21, 1003-1023.
    • (1995) Journal of Management , vol.21 , pp. 1003-1023
    • Roth, P.L.1    Switzer III, F.S.2
  • 44
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 46
    • 0003133902 scopus 로고
    • Latent variable models and missing data analysis
    • A. von Eye & C. C. Clogg (Eds.). Thousand Oaks, CA: Sage
    • Rovine, M. J. (1994). Latent variable models and missing data analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 181-225). Thousand Oaks, CA: Sage.
    • (1994) Latent Variables Analysis: Applications for Developmental Research , pp. 181-225
    • Rovine, M.J.1
  • 48
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147-177.
    • (2002) Psychological Methods , vol.7 , Issue.2 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 49
    • 0032342705 scopus 로고    scopus 로고
    • Systematic data loss in HRM settings: A Monte Carlo analysis
    • Switzer, F. S., III, Roth, P. L., & Switzer, D. M. (1998). Systematic data loss in HRM settings: A Monte Carlo analysis. Journal of Management, 24(6), 763-779.
    • (1998) Journal of Management , vol.24 , Issue.6 , pp. 763-779
    • Switzer III, F.S.1    Roth, P.L.2    Switzer, D.M.3
  • 50
    • 0345333337 scopus 로고
    • Confirmatory factor analysis applications: Missing data problems and comparison of path models between populations
    • Werts, C. E., Rock, D. A., & Grandy, J. (1979). Confirmatory factor analysis applications: Missing data problems and comparison of path models between populations. Multivariate Behavioral Research, 14, 199-213.
    • (1979) Multivariate Behavioral Research , vol.14 , pp. 199-213
    • Werts, C.E.1    Rock, D.A.2    Grandy, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.