-
1
-
-
50449098285
-
Mechanisms of thrombus formation
-
Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938-949.
-
(2008)
N Engl J Med.
, vol.359
, Issue.9
, pp. 938-949
-
-
Furie, B.1
Furie, B.C.2
-
2
-
-
84894222894
-
Treatment of venous thromboembolism
-
Wells PS, Forgie MA, Rodger MA. Treatment of venous thromboembolism. JAMA. 2014;311(7):717-728.
-
(2014)
JAMA.
, vol.311
, Issue.7
, pp. 717-728
-
-
Wells, P.S.1
Forgie, M.A.2
Rodger, M.A.3
-
3
-
-
84873025833
-
International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer
-
Farge D, et al. International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. J Thromb Haemost. 2013;11(1):56-70.
-
(2013)
J Thromb Haemost.
, vol.11
, Issue.1
, pp. 56-70
-
-
Farge, D.1
-
4
-
-
45949101608
-
The vessel wall and its interactions
-
Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111(11):5271-5281.
-
(2008)
Blood
, vol.111
, Issue.11
, pp. 5271-5281
-
-
Wagner, D.D.1
Frenette, P.S.2
-
5
-
-
39749109478
-
Triggers, targets and treatments for thrombosis
-
Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451(7181):914-918.
-
(2008)
Nature
, vol.451
, Issue.7181
, pp. 914-918
-
-
Mackman, N.1
-
6
-
-
0023505509
-
Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide
-
Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265-9269.
-
(1987)
Proc Natl Acad Sci U S A
, vol.84
, Issue.24
, pp. 9265-9269
-
-
Ignarro, L.J.1
Buga, G.M.2
Wood, K.S.3
Byrns, R.E.4
Chaudhuri, G.5
-
7
-
-
0023198721
-
Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor
-
Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524-526.
-
(1987)
Nature
, vol.327
, Issue.6122
, pp. 524-526
-
-
Palmer, R.M.1
Ferrige, A.G.2
Moncada, S.3
-
9
-
-
18044384409
-
Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection
-
Marcus AJ, et al. Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Semin Thromb Hemost. 2005;31(2):234-246.
-
(2005)
Semin Thromb Hemost.
, vol.31
, Issue.2
, pp. 234-246
-
-
Marcus, A.J.1
-
11
-
-
0000534956
-
New cytoplasmic components in arterial endothelia
-
Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J Cell Biol. 1964;23:101-112.
-
(1964)
J Cell Biol.
, vol.23
, pp. 101-112
-
-
Weibel, E.R.1
Palade, G.E.2
-
12
-
-
38949205667
-
Glycoprotein Ibalpha and von Willebrand factor in primary platelet adhesion and thrombus formation: Lessons from mutant mice
-
Bergmeier W, Chauhan AK, Wagner DD. Glycoprotein Ibalpha and von Willebrand factor in primary platelet adhesion and thrombus formation: lessons from mutant mice. Thromb Haemost. 2008;99(2):264-270.
-
(2008)
Thromb Haemost.
, vol.99
, Issue.2
, pp. 264-270
-
-
Bergmeier, W.1
Chauhan, A.K.2
Wagner, D.D.3
-
13
-
-
0027259388
-
The Weibel-Palade body: The storage granule for von Willebrand factor and P-selectin
-
Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost. 1993;70(1):105-110.
-
(1993)
Thromb Haemost.
, vol.70
, Issue.1
, pp. 105-110
-
-
Wagner, D.D.1
-
14
-
-
37349084977
-
Inhibition of N-ethylmaleimide-sensitive factor protects against myocardial ischemia/reperfusion injury
-
Calvert JW, et al. Inhibition of N-ethylmaleimide-sensitive factor protects against myocardial ischemia/reperfusion injury. Circ Res. 2007;101(12):1247-1254.
-
(2007)
Circ Res.
, vol.101
, Issue.12
, pp. 1247-1254
-
-
Calvert, J.W.1
-
15
-
-
20444452442
-
HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size
-
Yamakuchi M, et al. HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size. Circ Res. 2005;96(11):1185-1192.
-
(2005)
Circ Res.
, vol.96
, Issue.11
, pp. 1185-1192
-
-
Yamakuchi, M.1
-
16
-
-
84867159190
-
JAMA patient page. Bleeding disorders
-
Goodman DM, Burke AE, Livingston EH. JAMA patient page. Bleeding disorders. JAMA. 2012;308(14):1492.
-
(2012)
JAMA.
, vol.308
, Issue.14
, pp. 1492
-
-
Goodman, D.M.1
Burke, A.E.2
Livingston, E.H.3
-
17
-
-
0028909230
-
Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group
-
Thompson SG, Kienast J, Pyke SD, Haverkate F, Van De Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med. 1995;332(10):635-641.
-
(1995)
N Engl J Med.
, vol.332
, Issue.10
, pp. 635-641
-
-
Thompson, S.G.1
Kienast, J.2
Pyke, S.D.3
Haverkate, F.4
Van De Loo, J.C.5
-
18
-
-
41649119245
-
Von Willebrand factor in cardiovascular disease: Focus on acute coronary syndromes
-
Spiel AO, Gilbert JC, Jilma B. von Willebrand factor in cardiovascular disease: focus on acute coronary syndromes. Circulation. 2008;117(11):1449-1459.
-
(2008)
Circulation.
, vol.117
, Issue.11
, pp. 1449-1459
-
-
Spiel, A.O.1
Gilbert, J.C.2
Jilma, B.3
-
19
-
-
33646771330
-
Von Willebrand factor, endothelial dysfunction, and cardiovascular disease
-
Vischer UM. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. J Thromb Haemost. 2006;4(6):1186-1193.
-
(2006)
J Thromb Haemost.
, vol.4
, Issue.6
, pp. 1186-1193
-
-
Vischer, U.M.1
-
20
-
-
0032836484
-
Membrane fusion and exocytosis
-
Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863-911.
-
(1999)
Annu Rev Biochem.
, vol.68
, pp. 863-911
-
-
Jahn, R.1
Sudhof, T.C.2
-
21
-
-
0028143698
-
Mechanisms of intracellular protein transport
-
Rothman JE. Mechanisms of intracellular protein transport. Nature. 1994;372(6501):55-63.
-
(1994)
Nature
, vol.372
, Issue.6501
, pp. 55-63
-
-
Rothman, J.E.1
-
23
-
-
0029026392
-
The synaptic vesicle cycle: A cascade of protein-protein interactions
-
Sudhof TC. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature. 1995;375(6533):645-653.
-
(1995)
Nature
, vol.375
, Issue.6533
, pp. 645-653
-
-
Sudhof, T.C.1
-
24
-
-
33747622293
-
SNAREs - Engines for membrane fusion
-
Jahn R, Scheller RH. SNAREs - engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7(9):631-643.
-
(2006)
Nat Rev Mol Cell Biol.
, vol.7
, Issue.9
, pp. 631-643
-
-
Jahn, R.1
Scheller, R.H.2
-
25
-
-
0033637985
-
The synaptic vesicle cycle revisited
-
Sudhof TC. The synaptic vesicle cycle revisited. Neuron. 2000;28(2):317-320.
-
(2000)
Neuron.
, vol.28
, Issue.2
, pp. 317-320
-
-
Sudhof, T.C.1
-
26
-
-
45849152550
-
Mechanisms of membrane fusion: Disparate players and common principles
-
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 2008;9(7):543-556.
-
(2008)
Nat Rev Mol Cell Biol.
, vol.9
, Issue.7
, pp. 543-556
-
-
Martens, S.1
McMahon, H.T.2
-
28
-
-
84866050788
-
Secretion of soluble vascular endothelial growth factor receptor 1 (sVEGFR1/sFlt1) requires Arf1, Arf6, and Rab11 GTPases
-
Jung JJ, Tiwari A, Inamdar SM, Thomas CP, Goel A, Choudhury A. Secretion of soluble vascular endothelial growth factor receptor 1 (sVEGFR1/sFlt1) requires Arf1, Arf6, and Rab11 GTPases. PLoS One. 2012;7(9):e44572.
-
(2012)
PLoS One.
, vol.7
, Issue.9
, pp. e44572
-
-
Jung, J.J.1
Tiwari, A.2
Inamdar, S.M.3
Thomas, C.P.4
Goel, A.5
Choudhury, A.6
-
29
-
-
84863799076
-
The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in endothelial cells
-
Van Hooren KW, Van Agtmaal EL, Fernandez-Borja M, Van Mourik JA, Voorberg J, Bierings R. The Epac-Rap1 signaling pathway controls cAMP-mediated exocytosis of Weibel-Palade bodies in endothelial cells. J Biol Chem. 2012;287(29):24713-24720.
-
(2012)
J Biol Chem.
, vol.287
, Issue.29
, pp. 24713-24720
-
-
Van Hooren, K.W.1
Van Agtmaal, E.L.2
Fernandez-Borja, M.3
Van Mourik, J.A.4
Voorberg, J.5
Bierings, R.6
-
30
-
-
84934439592
-
Exocytosis of endothelial cells is regulated by N-ethylmaleimide-sensitive factor
-
Yamakuchi M, et al. Exocytosis of endothelial cells is regulated by N-ethylmaleimide-sensitive factor. Methods Mol Biol. 2008;440:203-215.
-
(2008)
Methods Mol Biol.
, vol.440
, pp. 203-215
-
-
Yamakuchi, M.1
-
31
-
-
84866851005
-
The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis
-
Bierings R, et al. The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis. Blood. 2012;120(13):2757-2767.
-
(2012)
Blood
, vol.120
, Issue.13
, pp. 2757-2767
-
-
Bierings, R.1
-
32
-
-
80052630604
-
Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells
-
Pulido IR, Nightingale TD, Darchen F, Seabra MC, Cutler DF, Gerke V. Myosin Va acts in concert with Rab27a and MyRIP to regulate acute von-Willebrand factor release from endothelial cells. Traffic. 2011;12(10):1371-1382.
-
(2011)
Traffic.
, vol.12
, Issue.10
, pp. 1371-1382
-
-
Pulido, I.R.1
Nightingale, T.D.2
Darchen, F.3
Seabra, M.C.4
Cutler, D.F.5
Gerke, V.6
-
33
-
-
66549127369
-
Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells
-
Nightingale TD, Pattni K, Hume AN, Seabra MC, Cutler DF. Rab27a and MyRIP regulate the amount and multimeric state of VWF released from endothelial cells. Blood. 2009;113(20):5010-5018.
-
(2009)
Blood
, vol.113
, Issue.20
, pp. 5010-5018
-
-
Nightingale, T.D.1
Pattni, K.2
Hume, A.N.3
Seabra, M.C.4
Cutler, D.F.5
-
34
-
-
77954368879
-
Regulation of Weibel-Palade body exocytosis by alphasynuclein in endothelial cells
-
Kim KS, Park JY, Jou I, Park SM. Regulation of Weibel-Palade body exocytosis by alphasynuclein in endothelial cells. J Biol Chem. 2010;285(28):21416-21425.
-
(2010)
J Biol Chem.
, vol.285
, Issue.28
, pp. 21416-21425
-
-
Kim, K.S.1
Park, J.Y.2
Jou, I.3
Park, S.M.4
-
35
-
-
10744220088
-
Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimidesensitive factor
-
Matsushita K, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimidesensitive factor. Cell. 2003;115(2):139-150.
-
(2003)
Cell
, vol.115
, Issue.2
, pp. 139-150
-
-
Matsushita, K.1
-
36
-
-
79953182367
-
Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor
-
Ito T, Yamakuchi M, Lowenstein CJ. Thioredoxin increases exocytosis by denitrosylating N-ethylmaleimide-sensitive factor. J Biol Chem. 2011;286(13):11179-11184.
-
(2011)
J Biol Chem.
, vol.286
, Issue.13
, pp. 11179-11184
-
-
Ito, T.1
Yamakuchi, M.2
Lowenstein, C.J.3
-
37
-
-
78149336370
-
Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice
-
Huang J, Motto DG, Bundle DR, Sadler JE. Shiga toxin B subunits induce VWF secretion by human endothelial cells and thrombotic microangiopathy in ADAMTS13-deficient mice. Blood. 2010;116(18):3653-3659.
-
(2010)
Blood
, vol.116
, Issue.18
, pp. 3653-3659
-
-
Huang, J.1
Motto, D.G.2
Bundle, D.R.3
Sadler, J.E.4
-
38
-
-
80053181057
-
Shiga toxin (Stx) 1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways
-
Liu F, Huang J, Sadler JE. Shiga toxin (Stx) 1B and Stx2B induce von Willebrand factor secretion from human umbilical vein endothelial cells through different signaling pathways. Blood. 2011;118(12):3392-3398.
-
(2011)
Blood
, vol.118
, Issue.12
, pp. 3392-3398
-
-
Liu, F.1
Huang, J.2
Sadler, J.E.3
-
39
-
-
77957200674
-
A revised model for the secretion of tPA and cytokines from cultured endothelial cells
-
Knipe L, et al. A revised model for the secretion of tPA and cytokines from cultured endothelial cells. Blood. 2010;116(12):2183-2191.
-
(2010)
Blood
, vol.116
, Issue.12
, pp. 2183-2191
-
-
Knipe, L.1
-
40
-
-
34247265992
-
Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells
-
Into T, et al. Pathogen recognition by Toll-like receptor 2 activates Weibel-Palade body exocytosis in human aortic endothelial cells. J Biol Chem. 2007;282(11):8134-8141.
-
(2007)
J Biol Chem.
, vol.282
, Issue.11
, pp. 8134-8141
-
-
Into, T.1
-
41
-
-
4043063505
-
Ceramide triggers Weibel-Palade body exocytosis
-
Bhatia R, Matsushita K, Yamakuchi M, Morrell CN, Cao W, Lowenstein CJ. Ceramide triggers Weibel-Palade body exocytosis. Circ Res. 2004;95(3):319-324.
-
(2004)
Circ Res.
, vol.95
, Issue.3
, pp. 319-324
-
-
Bhatia, R.1
Matsushita, K.2
Yamakuchi, M.3
Morrell, C.N.4
Cao, W.5
Lowenstein, C.J.6
-
42
-
-
3843054498
-
Sphingosine 1-phosphate activates Weibel-Palade body exocytosis
-
Matsushita K, Morrell CN, Lowenstein CJ. Sphingosine 1-phosphate activates Weibel-Palade body exocytosis. Proc Natl Acad Sci U S A. 2004;101(31):11483-11487.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.31
, pp. 11483-11487
-
-
Matsushita, K.1
Morrell, C.N.2
Lowenstein, C.J.3
-
43
-
-
62649094917
-
Aldosterone activates endothelial exocytosis
-
Jeong Y, et al. Aldosterone activates endothelial exocytosis. Proc Natl Acad Sci U S A. 2009;106(10):3782-3787.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.10
, pp. 3782-3787
-
-
Jeong, Y.1
-
44
-
-
33846586525
-
Antibody to human leukocyte antigen triggers endothelial exocytosis
-
Yamakuchi M, et al. Antibody to human leukocyte antigen triggers endothelial exocytosis. Proc Natl Acad Sci U S A. 2007;104(4):1301-1306.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, Issue.4
, pp. 1301-1306
-
-
Yamakuchi, M.1
-
45
-
-
77950217693
-
Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium
-
Smith NL, et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010;121(12):1382-1392.
-
(2010)
Circulation.
, vol.121
, Issue.12
, pp. 1382-1392
-
-
Smith, N.L.1
-
46
-
-
79960890548
-
Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels
-
Antoni G, et al. Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels. BMC Med Genet. 2011;12:102.
-
(2011)
BMC Med Genet.
, vol.12
, pp. 102
-
-
Antoni, G.1
-
47
-
-
79952813198
-
Effect of genetic variations in syntaxin-binding protein-5 and syntaxin-2 on von Willebrand factor concentration and cardiovascular risk
-
Van Loon JE, et al. Effect of genetic variations in syntaxin-binding protein-5 and syntaxin-2 on von Willebrand factor concentration and cardiovascular risk. Circ Cardiovasc Genet. 2010;3(6):507-512.
-
(2010)
Circ Cardiovasc Genet.
, vol.3
, Issue.6
, pp. 507-512
-
-
Van Loon, J.E.1
-
48
-
-
79957977435
-
Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis
-
Smith NL, et al. Genetic variation associated with plasma von Willebrand factor levels and the risk of incident venous thrombosis. Blood. 2011;117(22):6007-6011.
-
(2011)
Blood
, vol.117
, Issue.22
, pp. 6007-6011
-
-
Smith, N.L.1
-
49
-
-
17344376286
-
Tomosyn: A syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process
-
Fujita Y, et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron. 1998;20(5):905-915.
-
(1998)
Neuron.
, vol.20
, Issue.5
, pp. 905-915
-
-
Fujita, Y.1
-
50
-
-
0033525719
-
Three splicing variants of tomosyn and identification of their syntaxin-binding region
-
Yokoyama S, Shirataki H, Sakisaka T, Takai Y. Three splicing variants of tomosyn and identification of their syntaxin-binding region. Biochem Biophys Res Commun. 1999;256(1):218-222.
-
(1999)
Biochem Biophys Res Commun.
, vol.256
, Issue.1
, pp. 218-222
-
-
Yokoyama, S.1
Shirataki, H.2
Sakisaka, T.3
Takai, Y.4
-
51
-
-
13244292391
-
Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain
-
Groffen AJ, Jacobsen L, Schut D, Verhage M. Two distinct genes drive expression of seven tomosyn isoforms in the mammalian brain, sharing a conserved structure with a unique variable domain. J Neurochem. 2005;92(3):554-568.
-
(2005)
J Neurochem.
, vol.92
, Issue.3
, pp. 554-568
-
-
Groffen, A.J.1
Jacobsen, L.2
Schut, D.3
Verhage, M.4
-
52
-
-
8744252596
-
Structural basis for the inhibitory role of tomosyn in exocytosis
-
Pobbati AV, Razeto A, Boddener M, Becker S, Fasshauer D. Structural basis for the inhibitory role of tomosyn in exocytosis. J Biol Chem. 2004;279(45):47192-47200.
-
(2004)
J Biol Chem.
, vol.279
, Issue.45
, pp. 47192-47200
-
-
Pobbati, A.V.1
Razeto, A.2
Boddener, M.3
Becker, S.4
Fasshauer, D.5
-
53
-
-
0042733066
-
The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis
-
Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem. 2003;278(33):31159-31166.
-
(2003)
J Biol Chem.
, vol.278
, Issue.33
, pp. 31159-31166
-
-
Hatsuzawa, K.1
Lang, T.2
Fasshauer, D.3
Bruns, D.4
Jahn, R.5
-
54
-
-
0031696595
-
Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil
-
Masuda ES, Huang BC, Fisher JM, Luo Y, Scheller RH. Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil. Neuron. 1998;21(3):479-480.
-
(1998)
Neuron.
, vol.21
, Issue.3
, pp. 479-480
-
-
Masuda, E.S.1
Huang, B.C.2
Fisher, J.M.3
Luo, Y.4
Scheller, R.H.5
-
55
-
-
34848928507
-
Multiple functional domains are involved in tomosyn regulation of exocytosis
-
Yizhar O, et al. Multiple functional domains are involved in tomosyn regulation of exocytosis. J Neurochem. 2007;103(2):604-616.
-
(2007)
J Neurochem.
, vol.103
, Issue.2
, pp. 604-616
-
-
Yizhar, O.1
-
56
-
-
55949121583
-
Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release
-
Sakisaka T, et al. Dual inhibition of SNARE complex formation by tomosyn ensures controlled neurotransmitter release. J Cell Biol. 2008;183(2):323-337.
-
(2008)
J Cell Biol.
, vol.183
, Issue.2
, pp. 323-337
-
-
Sakisaka, T.1
-
57
-
-
1442354782
-
Tomosyn inhibits priming of large dense-core vesicles in a calciumdependent manner
-
Yizhar O, et al. Tomosyn inhibits priming of large dense-core vesicles in a calciumdependent manner. Proc Natl Acad Sci U S A. 2004;101(8):2578-2583.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.8
, pp. 2578-2583
-
-
Yizhar, O.1
-
58
-
-
77955585462
-
The tail domain of tomosyn controls membrane fusion through tomosyn displacement by VAMP2
-
Yamamoto Y, et al. The tail domain of tomosyn controls membrane fusion through tomosyn displacement by VAMP2. Biochem Biophys Res Commun. 2010;399(1):24-30.
-
(2010)
Biochem Biophys Res Commun.
, vol.399
, Issue.1
, pp. 24-30
-
-
Yamamoto, Y.1
-
59
-
-
79954613382
-
Structural and functional analysis of tomosyn identifies domains important in exocytotic regulation
-
Williams AL, et al. Structural and functional analysis of tomosyn identifies domains important in exocytotic regulation. J Biol Chem. 2011;286(16):14542-14553.
-
(2011)
J Biol Chem.
, vol.286
, Issue.16
, pp. 14542-14553
-
-
Williams, A.L.1
-
61
-
-
34547942015
-
Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells
-
Gladycheva SE, et al. Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells. J Biol Chem. 2007;282(31):22887-22899.
-
(2007)
J Biol Chem.
, vol.282
, Issue.31
, pp. 22887-22899
-
-
Gladycheva, S.E.1
-
62
-
-
0024364675
-
GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies
-
Mcever RP, Beckstead JH, Moore KL, Marshallcarlson L, Bainton DF. GMP-140, a platelet α-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989;84(1):92-99.
-
(1989)
J Clin Invest.
, vol.84
, Issue.1
, pp. 92-99
-
-
Mcever, R.P.1
Beckstead, J.H.2
Moore, K.L.3
Marshallcarlson, L.4
Bainton, D.F.5
-
63
-
-
77957014978
-
Arterial thrombus formation. Novel mechanisms and targets
-
Hagedorn I, Vogtle T, Nieswandt B. Arterial thrombus formation. Novel mechanisms and targets. Hamostaseologie. 2010;30(3):127-135.
-
(2010)
Hamostaseologie.
, vol.30
, Issue.3
, pp. 127-135
-
-
Hagedorn, I.1
Vogtle, T.2
Nieswandt, B.3
-
64
-
-
55749101354
-
Molecular mechanisms of thrombus formation in ischemic stroke: Novel insights and targets for treatment
-
Stoll G, Kleinschnitz C, Nieswandt B. Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood. 2008;112(9):3555-3562.
-
(2008)
Blood
, vol.112
, Issue.9
, pp. 3555-3562
-
-
Stoll, G.1
Kleinschnitz, C.2
Nieswandt, B.3
-
65
-
-
13244265094
-
Clotting mechanisms and cancer: Implications in thrombus formation and tumor progression
-
Falanga A, Marchetti M, Vignoli A, Balducci D. Clotting mechanisms and cancer: implications in thrombus formation and tumor progression. Clin Adv Hematol Oncol. 2003;1(11):673-678.
-
(2003)
Clin Adv Hematol Oncol.
, vol.1
, Issue.11
, pp. 673-678
-
-
Falanga, A.1
Marchetti, M.2
Vignoli, A.3
Balducci, D.4
-
66
-
-
13544273188
-
Protease-activated receptor-1 activation of endothelial cells induces protein kinase Cα-dependent phosphorylation of syntaxin 4 and Munc18c: Role in signaling p-selectin expression
-
Fu J, Naren AP, Gao X, Ahmmed GU, Malik AB. Protease-activated receptor-1 activation of endothelial cells induces protein kinase Cα-dependent phosphorylation of syntaxin 4 and Munc18c: role in signaling p-selectin expression. J Biol Chem. 2005;280(5):3178-3184.
-
(2005)
J Biol Chem.
, vol.280
, Issue.5
, pp. 3178-3184
-
-
Fu, J.1
Naren, A.P.2
Gao, X.3
Ahmmed, G.U.4
Malik, A.B.5
-
67
-
-
79955656396
-
Functional architecture of Weibel-Palade bodies
-
Valentijn KM, Sadler JE, Valentijn JA, Voorberg J, Eikenboom J. Functional architecture of Weibel-Palade bodies. Blood. 2011;117(19):5033-5043.
-
(2011)
Blood
, vol.117
, Issue.19
, pp. 5033-5043
-
-
Valentijn, K.M.1
Sadler, J.E.2
Valentijn, J.A.3
Voorberg, J.4
Eikenboom, J.5
-
68
-
-
78650365993
-
2+-dependent neurotransmitter release through its N-terminal WD40 repeats
-
2+-dependent neurotransmitter release through its N-terminal WD40 repeats. J Biol Chem. 2010;285(52):40943-40955.
-
(2010)
J Biol Chem.
, vol.285
, Issue.52
, pp. 40943-40955
-
-
Yamamoto, Y.1
-
69
-
-
0032879824
-
Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow
-
Savage B, Ginsberg MH, Ruggeri ZM. Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. Blood. 1999;94(8):2704-2715.
-
(1999)
Blood
, vol.94
, Issue.8
, pp. 2704-2715
-
-
Savage, B.1
Ginsberg, M.H.2
Ruggeri, Z.M.3
-
70
-
-
84863636752
-
Effect of genetic variation in STXBP5 and STX2 on von Wille brand factor and bleeding phenotype in type 1 von Willebrand disease patients
-
Van Loon JE, Sanders YV, De Wee EM, Kruip MJ, De Maat MP, Leebeek FW. Effect of genetic variation in STXBP5 and STX2 on von Wille brand factor and bleeding phenotype in type 1 von Willebrand disease patients. PLoS One. 2012;7(7):e40624.
-
(2012)
PLoS One.
, vol.7
, Issue.7
, pp. e40624
-
-
Van Loon, J.E.1
Sanders, Y.V.2
De Wee, E.M.3
Kruip, M.J.4
De Maat, M.P.5
Leebeek, F.W.6
-
71
-
-
33746726458
-
Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13
-
McEwen JM, Madison JM, Dybbs M, Kaplan JM. Antagonistic regulation of synaptic vesicle priming by Tomosyn and UNC-13. Neuron. 2006;51(3):303-315.
-
(2006)
Neuron.
, vol.51
, Issue.3
, pp. 303-315
-
-
McEwen, J.M.1
Madison, J.M.2
Dybbs, M.3
Kaplan, J.M.4
-
72
-
-
29944443664
-
The yeast lgl family member Sro7p is an effector of the secretory Rab GTPase Sec4p
-
Grosshans BL, et al. The yeast lgl family member Sro7p is an effector of the secretory Rab GTPase Sec4p. J Cell Biol. 2006;172(1):55-66.
-
(2006)
J Cell Biol.
, vol.172
, Issue.1
, pp. 55-66
-
-
Grosshans, B.L.1
-
73
-
-
34047100822
-
Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism
-
Hattendorf DA, Andreeva A, Gangar A, Brennwald PJ, Weis WI. Structure of the yeast polarity protein Sro7 reveals a SNARE regulatory mechanism. Nature. 2007;446(7135):567-571.
-
(2007)
Nature
, vol.446
, Issue.7135
, pp. 567-571
-
-
Hattendorf, D.A.1
Andreeva, A.2
Gangar, A.3
Brennwald, P.J.4
Weis, W.I.5
-
74
-
-
0035976798
-
Calcium-dependent translocation of synaptotagmin to the plasma membrane in the dendrites of developing neurones
-
Schwab Y, Mouton J, Chasserot-Golaz S, Marty I, Maulet Y, Jover E. Calcium-dependent translocation of synaptotagmin to the plasma membrane in the dendrites of developing neurones. Mol Brain Res. 2001;96(1-2):1-13.
-
(2001)
Mol Brain Res.
, vol.96
, Issue.1-2
, pp. 1-13
-
-
Schwab, Y.1
Mouton, J.2
Chasserot-Golaz, S.3
Marty, I.4
Maulet, Y.5
Jover, E.6
-
75
-
-
33748605056
-
A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis
-
Tang J, Maximov A, Shin OH, Dai H, Rizo J, Sudhof TC. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell. 2006;126(6):1175-1187.
-
(2006)
Cell
, vol.126
, Issue.6
, pp. 1175-1187
-
-
Tang, J.1
Maximov, A.2
Shin, O.H.3
Dai, H.4
Rizo, J.5
Sudhof, T.C.6
-
76
-
-
84882767998
-
Prevalent mechanism of membrane bridging by synaptotagmin-1
-
Seven AB, Brewer KD, Shi L, Jiang QX, Rizo J. Prevalent mechanism of membrane bridging by synaptotagmin-1. Proc Natl Acad Sci U S A. 2013;110(34):E3243-E3E52.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, Issue.34
, pp. E3243-E3E52
-
-
Seven, A.B.1
Brewer, K.D.2
Shi, L.3
Jiang, Q.X.4
Rizo, J.5
-
77
-
-
84883308384
-
Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex
-
Xu JJ, Brewer KD, Perez-Castillejos R, Rizo J. Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex. J Mol Biol. 2013;425(18):3461-3475.
-
(2013)
J Mol Biol.
, vol.425
, Issue.18
, pp. 3461-3475
-
-
Xu, J.J.1
Brewer, K.D.2
Perez-Castillejos, R.3
Rizo, J.4
-
78
-
-
0035999998
-
Selective and signal-dependent recruitment of membrane proteins to secretory granules formed by heterologously expressed von Willebrand factor
-
Blagoveshchenskaya AD, Hannah MJ, Allen S, Cutler DF. Selective and signal-dependent recruitment of membrane proteins to secretory granules formed by heterologously expressed von Willebrand factor. Mol Biol Cell. 2002;13(5):1582-1593.
-
(2002)
Mol Biol Cell.
, vol.13
, Issue.5
, pp. 1582-1593
-
-
Blagoveshchenskaya, A.D.1
Hannah, M.J.2
Allen, S.3
Cutler, D.F.4
-
79
-
-
45549087119
-
Basal secretion of von Willebrand factor from human endothelial cells
-
Giblin JP, Hewlett LJ, Hannah MJ. Basal secretion of von Willebrand factor from human endothelial cells. Blood. 2008;112(4):957-964.
-
(2008)
Blood
, vol.112
, Issue.4
, pp. 957-964
-
-
Giblin, J.P.1
Hewlett, L.J.2
Hannah, M.J.3
-
80
-
-
33746853822
-
Tomosyn-1 is involved in a postdocking event required for pancreatic β-cell exocytosis
-
Cheviet S, et al. Tomosyn-1 is involved in a postdocking event required for pancreatic β-cell exocytosis. J Cell Sci. 2006;119(pt 14):2912-2920.
-
(2006)
J Cell Sci.
, vol.119
, pp. 2912-2920
-
-
Cheviet, S.1
-
81
-
-
84865237107
-
Contribution of platelet vs endothelial VWF to platelet adhesion and hemostasis
-
Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J Thromb Haemost. 2012;10(8):1646-1652.
-
(2012)
J Thromb Haemost.
, vol.10
, Issue.8
, pp. 1646-1652
-
-
Kanaji, S.1
Fahs, S.A.2
Shi, Q.3
Haberichter, S.L.4
Montgomery, R.R.5
-
82
-
-
23044513025
-
A novel inhibitor of N-ethylmaleimide-sensitive factor decreases leukocyte trafficking and peritonitis
-
Morrell CN, Matsushita K, Lowenstein CJ. A novel inhibitor of N-ethylmaleimide-sensitive factor decreases leukocyte trafficking and peritonitis. J Pharmacol Exp Ther. 2005;314(1):155-161.
-
(2005)
J Pharmacol Exp Ther.
, vol.314
, Issue.1
, pp. 155-161
-
-
Morrell, C.N.1
Matsushita, K.2
Lowenstein, C.J.3
-
83
-
-
79551539785
-
Escherichia coli-derived von Willebrand factor-A2 domain fluorescence/Forster resonance energy transfer proteins that quantify ADAMTS13 activity
-
Dayananda KM, Gogia S, Neelamegham S. Escherichia coli-derived von Willebrand factor-A2 domain fluorescence/Forster resonance energy transfer proteins that quantify ADAMTS13 activity. Anal Biochem. 2011;410(2):206-213.
-
(2011)
Anal Biochem.
, vol.410
, Issue.2
, pp. 206-213
-
-
Dayananda, K.M.1
Gogia, S.2
Neelamegham, S.3
-
84
-
-
0042818205
-
Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulinstimulated GLUT4 translocation
-
Widberg CH, Bryant NJ, Girotti M, Rea S, James DE. Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulinstimulated GLUT4 translocation. J Biol Chem. 2003;278(37):35093-35101.
-
(2003)
J Biol Chem.
, vol.278
, Issue.37
, pp. 35093-35101
-
-
Widberg, C.H.1
Bryant, N.J.2
Girotti, M.3
Rea, S.4
James, D.E.5
-
85
-
-
41149152337
-
Glutamate mediates platelet activation through the AMPA receptor
-
Morrell CN, et al. Glutamate mediates platelet activation through the AMPA receptor. J Exp Med. 2008;205(3):575-584.
-
(2008)
J Exp Med.
, vol.205
, Issue.3
, pp. 575-584
-
-
Morrell, C.N.1
-
86
-
-
80052421895
-
Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model
-
Owens AP, et al. Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model. J Thromb Haemost. 2011;9(9):1862-1863.
-
(2011)
J Thromb Haemost.
, vol.9
, Issue.9
, pp. 1862-1863
-
-
Owens, A.P.1
-
87
-
-
79953314017
-
Mechanisms underlying FeCl3-induced arterial thrombosis
-
Eckly A, et al. Mechanisms underlying FeCl3-induced arterial thrombosis. J Thromb Haemost. 2011;9(4):779-789.
-
(2011)
J Thromb Haemost.
, vol.9
, Issue.4
, pp. 779-789
-
-
Eckly, A.1
|