메뉴 건너뛰기




Volumn 60, Issue , 2014, Pages 166-181

Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs)

Author keywords

Fuzzy clustering method (FCM); Genetic algorithm (GA); Hybrid radial basis function neural networks (HRBFNNs); Polynomial fuzzy neurons (PFNs); Principal component analysis (PCA)

Indexed keywords

FUZZY CLUSTERING METHOD; POLYNOMIAL NEURAL NETWORKS (PNNS); RADIAL BASIS FUNCTION NEURAL NETWORKS;

EID: 84907482882     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.08.007     Document Type: Article
Times cited : (51)

References (34)
  • 1
    • 70350057609 scopus 로고    scopus 로고
    • A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems
    • Alcala R., Ducange P., Herrera F., Lazzerini B., Marcelloni F. A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems. IEEE Transactions on Fuzzy Systems 2009, 17:1106-1122.
    • (2009) IEEE Transactions on Fuzzy Systems , vol.17 , pp. 1106-1122
    • Alcala, R.1    Ducange, P.2    Herrera, F.3    Lazzerini, B.4    Marcelloni, F.5
  • 2
    • 84863875125 scopus 로고    scopus 로고
    • Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type
    • Bao G., Wen S., Zeng Z. Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type. Neural Networks 2012, 33:32-34.
    • (2012) Neural Networks , vol.33 , pp. 32-34
    • Bao, G.1    Wen, S.2    Zeng, Z.3
  • 3
    • 0035294755 scopus 로고    scopus 로고
    • Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data
    • Behloul F., Lelieveldt B.P.F., Boudraa A., Reiber J.H.C. Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data. Pattern Recognition 2002, 35:659-675.
    • (2002) Pattern Recognition , vol.35 , pp. 659-675
    • Behloul, F.1    Lelieveldt, B.P.F.2    Boudraa, A.3    Reiber, J.H.C.4
  • 5
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • Choi J.N., Oh S.K., Pedrycz W. Identification of fuzzy models using a successive tuning method with a variant identification ratio. Fuzzy Sets and Systems 2008, 159:2873-2889.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2873-2889
    • Choi, J.N.1    Oh, S.K.2    Pedrycz, W.3
  • 6
    • 69249203709 scopus 로고    scopus 로고
    • Computational intelligence tools for next generation quality of service management
    • del-Hoyo R., Martin-del-Brio B., Medrano N., Fernandez-Navajas J. Computational intelligence tools for next generation quality of service management. Neurocomputing 2009, 72:3631-3639.
    • (2009) Neurocomputing , vol.72 , pp. 3631-3639
    • del-Hoyo, R.1    Martin-del-Brio, B.2    Medrano, N.3    Fernandez-Navajas, J.4
  • 10
    • 79960891365 scopus 로고    scopus 로고
    • An efficient self-organizing RBF neural network for water quality prediction
    • Han H.G., Chen Q.L., Qiao J.F. An efficient self-organizing RBF neural network for water quality prediction. Neural Networks 2011, 24:717-725.
    • (2011) Neural Networks , vol.24 , pp. 717-725
    • Han, H.G.1    Chen, Q.L.2    Qiao, J.F.3
  • 11
    • 0006826682 scopus 로고
    • The review of problems solvable by algorithms of the Group Method of Data Handling (GMDH)
    • Ivakhnenko A.G., Ivakhnenko G.A. The review of problems solvable by algorithms of the Group Method of Data Handling (GMDH). Pattern Recognition and Image Analysis 1995, 5(4):527-535.
    • (1995) Pattern Recognition and Image Analysis , vol.5 , Issue.4 , pp. 527-535
    • Ivakhnenko, A.G.1    Ivakhnenko, G.A.2
  • 12
    • 0346686159 scopus 로고    scopus 로고
    • GMDH-based modeling and feedforward compensation for nonlinear friction in table drive systems
    • Iwasaki M., Takei H., Matsui N. GMDH-based modeling and feedforward compensation for nonlinear friction in table drive systems. IEEE Transactions on Industrial Electronics 2003, 50(6):1172-1178.
    • (2003) IEEE Transactions on Industrial Electronics , vol.50 , Issue.6 , pp. 1172-1178
    • Iwasaki, M.1    Takei, H.2    Matsui, N.3
  • 13
    • 0027266182 scopus 로고
    • Functional equivalence between radial basis function networks and fuzzy inference systems
    • Jang J.S.R., Sun C.T. Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks 1993, 4(1):156-158.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.1 , pp. 156-158
    • Jang, J.S.R.1    Sun, C.T.2
  • 14
    • 36049030839 scopus 로고    scopus 로고
    • Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece
    • Karatzas K.D., Kaltsatos S. Air pollution modelling with the aid of computational intelligence methods in Thessaloniki, Greece. Simulation Modelling Practice and Theory 2007, 15:1310-1319.
    • (2007) Simulation Modelling Practice and Theory , vol.15 , pp. 1310-1319
    • Karatzas, K.D.1    Kaltsatos, S.2
  • 16
    • 84055223390 scopus 로고    scopus 로고
    • The application of principal component analysis on financial analysis in real estate listed company
    • Li Y., Zhang Q. The application of principal component analysis on financial analysis in real estate listed company. Procedia Engineering 2011, 15:4499-4503.
    • (2011) Procedia Engineering , vol.15 , pp. 4499-4503
    • Li, Y.1    Zhang, Q.2
  • 17
    • 84880926625 scopus 로고    scopus 로고
    • Single-hidden-layer feed-forward quantum neural network based on Grover learning
    • Liu C.Y., Chen C., Chang C.T., Shih L.M. Single-hidden-layer feed-forward quantum neural network based on Grover learning. Neural Networks 2013, 45:144-150.
    • (2013) Neural Networks , vol.45 , pp. 144-150
    • Liu, C.Y.1    Chen, C.2    Chang, C.T.3    Shih, L.M.4
  • 18
    • 0021486565 scopus 로고
    • Prediction of human static and dynamic strengths by modified basic GMDH algorithm
    • Mital A. Prediction of human static and dynamic strengths by modified basic GMDH algorithm. IEEE Transactions on Systems, Man and Cybernetics 1984, 14:773-776.
    • (1984) IEEE Transactions on Systems, Man and Cybernetics , vol.14 , pp. 773-776
    • Mital, A.1
  • 19
    • 0026139912 scopus 로고
    • Nonlinear interpolation of mandibular kinesiographic signals by applying sensitivity method to a GMDH correction model
    • Nagata M., Takada K., Sakuda M. Nonlinear interpolation of mandibular kinesiographic signals by applying sensitivity method to a GMDH correction model. IEEE Transactions on Biomedical Engineering 1991, 38(4):326-329.
    • (1991) IEEE Transactions on Biomedical Engineering , vol.38 , Issue.4 , pp. 326-329
    • Nagata, M.1    Takada, K.2    Sakuda, M.3
  • 20
    • 84881541728 scopus 로고    scopus 로고
    • A design of granular-oriented self-organizing hybrid fuzzy polynomial neural networks
    • Oh S.K., Kim W.D., Park B.J., Pedrycz W. A design of granular-oriented self-organizing hybrid fuzzy polynomial neural networks. Neurocomputing 2013, 119:292-307.
    • (2013) Neurocomputing , vol.119 , pp. 292-307
    • Oh, S.K.1    Kim, W.D.2    Park, B.J.3    Pedrycz, W.4
  • 21
    • 78249255465 scopus 로고    scopus 로고
    • Polynomial-based radial basis function neural networks (P-RBFNNs) realized with the aid of particle swarm optimization
    • Oh S.K., Kim W.D., Pedrycz W., Park B.J. Polynomial-based radial basis function neural networks (P-RBFNNs) realized with the aid of particle swarm optimization. Fuzzy Sets and Systems 2011, 163:54-77.
    • (2011) Fuzzy Sets and Systems , vol.163 , pp. 54-77
    • Oh, S.K.1    Kim, W.D.2    Pedrycz, W.3    Park, B.J.4
  • 22
    • 67649464502 scopus 로고    scopus 로고
    • GA-based feed-forward Self-organizing neural network architecture and its applications for multi-variable nonlinear process systems
    • Oh S.K., Park H.S., Jeong C.W., Joo S.C. GA-based feed-forward Self-organizing neural network architecture and its applications for multi-variable nonlinear process systems. KSII Transactions on Internet and Information Systems 2009, 3(3):309-330.
    • (2009) KSII Transactions on Internet and Information Systems , vol.3 , Issue.3 , pp. 309-330
    • Oh, S.K.1    Park, H.S.2    Jeong, C.W.3    Joo, S.C.4
  • 23
    • 84878837786 scopus 로고    scopus 로고
    • A new approach to radial basis function-based polynomial neural networks: analysis and design
    • Oh S.K., Park H.S., Kim W.D., Pedrycz W. A new approach to radial basis function-based polynomial neural networks: analysis and design. Knowledge and Information Systems 2013, 157:121-151.
    • (2013) Knowledge and Information Systems , vol.157 , pp. 121-151
    • Oh, S.K.1    Park, H.S.2    Kim, W.D.3    Pedrycz, W.4
  • 24
    • 27744519316 scopus 로고    scopus 로고
    • Fuzzy polynomial neuron-based self-organizing neural networks
    • Oh S.K., Pedrycz W. Fuzzy polynomial neuron-based self-organizing neural networks. International Journal of General Systems 2003, 32(3):237-250.
    • (2003) International Journal of General Systems , vol.32 , Issue.3 , pp. 237-250
    • Oh, S.K.1    Pedrycz, W.2
  • 26
    • 0036801320 scopus 로고    scopus 로고
    • Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling
    • Park B.J., Pedrycz W., Oh S.K. Fuzzy polynomial neural networks: hybrid architectures of fuzzy modeling. IEEE Transactions on Fuzzy Systems 2002, 10(5):607-621.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.5 , pp. 607-621
    • Park, B.J.1    Pedrycz, W.2    Oh, S.K.3
  • 30
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • Pedrycz W., Park H.S., Oh S.K. A granular-oriented development of functional radial basis function neural networks. Neurocomputing 2008, 72:420-435.
    • (2008) Neurocomputing , vol.72 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Oh, S.K.3
  • 31
    • 34548722628 scopus 로고    scopus 로고
    • Computational intelligence in photonics technology and optical networks: a survey and future perspectives
    • Riziotis C., Vasilakos A.V. Computational intelligence in photonics technology and optical networks: a survey and future perspectives. Information Sciences 2007, 177:5292-5315.
    • (2007) Information Sciences , vol.177 , pp. 5292-5315
    • Riziotis, C.1    Vasilakos, A.V.2
  • 32
    • 80051519743 scopus 로고    scopus 로고
    • Evolutionary parallel and gradually distributed lateral tuning of fuzzy rule-based systems
    • Robles I., Alcala R., Benitez J.M., Herrera F. Evolutionary parallel and gradually distributed lateral tuning of fuzzy rule-based systems. Journal of Evolutionary Intelligence 2009, 2:5-19.
    • (2009) Journal of Evolutionary Intelligence , vol.2 , pp. 5-19
    • Robles, I.1    Alcala, R.2    Benitez, J.M.3    Herrera, F.4
  • 33
    • 0035507006 scopus 로고    scopus 로고
    • RBFNN-based hole identification system in conducting plates
    • Simone G., Morabito F.C. RBFNN-based hole identification system in conducting plates. IEEE Transactions on Neural Networks 2001, 12(6):1445-1454.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1445-1454
    • Simone, G.1    Morabito, F.C.2
  • 34
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • Staiano A., Tagliaferri R., Pedrycz W. Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 2006, 69:1570-1581.
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.