메뉴 건너뛰기




Volumn 163, Issue 1, 2011, Pages 54-77

Polynomial-based radial basis function neural networks (P-RBF NNs) realized with the aid of particle swarm optimization

Author keywords

Fuzzy clustering; Particle swarm optimization; Pattern classification; Polynomial neural networks; Radial basis function neural networks

Indexed keywords

CLUSTERING METHODS; DATA SETS; DESIGN PARAMETERS; FUNCTIONAL MODULES; FUZZIFICATIONS; FUZZY C-MEANS; FUZZY INFERENCE MECHANISM; HIDDEN LAYERS; INPUT-OUTPUT MAPPING; LEARNING RATES; MACHINE-LEARNING; MATRIX; MOMENTUM COEFFICIENT; NONLINEAR NATURE; PARTICLE SWARM; PATTERN CLASSIFICATION; POLYNOMIAL NEURAL NETWORKS; POLYNOMIAL WEIGHT; RADIAL BASIS FUNCTION NEURAL NETWORKS; RULE BASED; THREE PHASIS; TRAINING DATA;

EID: 78249255465     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2010.08.007     Document Type: Article
Times cited : (92)

References (36)
  • 2
  • 3
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippman An introduction to computing with neural nets IEEE ASSP Magazine 4 2 1981 4 22
    • (1981) IEEE ASSP Magazine , vol.4 , Issue.2 , pp. 4-22
    • Lippman, R.P.1
  • 4
    • 0032071920 scopus 로고    scopus 로고
    • A self-organizing neural tree for large-set pattern classification
    • H.H. Song, and S.W. Lee A self-organizing neural tree for large-set pattern classification IEEE Transactions on Neural Networks 9 1998 369 380
    • (1998) IEEE Transactions on Neural Networks , vol.9 , pp. 369-380
    • Song, H.H.1    Lee, S.W.2
  • 5
    • 0027111557 scopus 로고
    • Pattern classification using polynomial networks
    • A. Patrikar, and J. Provence Pattern classification using polynomial networks Electronics Letters 28 12 1992 1109 1110
    • (1992) Electronics Letters , vol.28 , Issue.12 , pp. 1109-1110
    • Patrikar, A.1    Provence, J.2
  • 6
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K.B. Cho, and B.H. Wang Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction Fuzzy Sets and Systems 83 1996 325 339
    • (1996) Fuzzy Sets and Systems , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 7
    • 0036565011 scopus 로고    scopus 로고
    • Face recognition with radical basis function (RBF) neural networks
    • M.J. Er, S.Q. Wu, J.W. Lu, and H.L. Toh Face recognition with radical basis function (RBF) neural networks IEEE Transactions on Neural Networks 13 3 2002 697 710
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 697-710
    • Er, M.J.1    Wu, S.Q.2    Lu, J.W.3    Toh, H.L.4
  • 8
    • 17644375158 scopus 로고    scopus 로고
    • Symbolic classification, clustering and fuzzy radial basis function network
    • K. Mali, and S. Mitra Symbolic classification, clustering and fuzzy radial basis function network Fuzzy Sets and Systems 152 2005 553 564
    • (2005) Fuzzy Sets and Systems , vol.152 , pp. 553-564
    • Mali, K.1    Mitra, S.2
  • 9
    • 78249260095 scopus 로고    scopus 로고
    • Design of polynomial neural network classifier for pattern classification with two classes
    • B.-J. Park, S.-K. Oh, and H.-K. Kim Design of polynomial neural network classifier for pattern classification with two classes Journal of Electrical Engineering & Technology 3 1 2008 108 114
    • (2008) Journal of Electrical Engineering & Technology , vol.3 , Issue.1 , pp. 108-114
    • Park, B.-J.1    Oh, S.-K.2    Kim, H.-K.3
  • 12
    • 0036749163 scopus 로고    scopus 로고
    • Optimal design of power-system stabilizers using particle swarm optimization
    • M.A. Abido Optimal design of power-system stabilizers using particle swarm optimization IEEE Transactions on Energy Conversion 17 3 2002 406 413
    • (2002) IEEE Transactions on Energy Conversion , vol.17 , Issue.3 , pp. 406-413
    • Abido, M.A.1
  • 13
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • A. Staiano, R. Tagliaferri, and W. Pedrycz Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering Neurocomputing 69 2006 1570 1581
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 15
    • 2642548268 scopus 로고    scopus 로고
    • Self-organizing neurofuzzy networks in modeling software data
    • S.-K. Oh, W. Pderycz, and B.-J. Park Self-organizing neurofuzzy networks in modeling software data Fuzzy Sets and Systems 145 2004 165 181
    • (2004) Fuzzy Sets and Systems , vol.145 , pp. 165-181
    • Oh, S.-K.1    Pderycz, W.2    Park, B.-J.3
  • 16
    • 2942539776 scopus 로고    scopus 로고
    • A particle swarm optimization approach for optimum design of PID Controller in AVR system
    • Z.L. Gaing A particle swarm optimization approach for optimum design of PID Controller in AVR system IEEE Transactions on Energy Conversion 19 2 2004 384 391
    • (2004) IEEE Transactions on Energy Conversion , vol.19 , Issue.2 , pp. 384-391
    • Gaing, Z.L.1
  • 17
    • 50149099964 scopus 로고    scopus 로고
    • Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence algorithm
    • C.-F. Juang, and C. Lo Zero-order TSK-type fuzzy system learning using a two-phase swarm intelligence algorithm Fuzzy Sets and Systems 159 2008 2910 2926
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2910-2926
    • Juang, C.-F.1    Lo, C.2
  • 18
    • 3142669892 scopus 로고    scopus 로고
    • On the computation of all global minimizers through particle swarm optimization
    • K.E. Parsopoulos, and M.N. Vrahatis On the computation of all global minimizers through particle swarm optimization IEEE Transactions on Evolutionary Computation 8 3 2004 211 224
    • (2004) IEEE Transactions on Evolutionary Computation , vol.8 , Issue.3 , pp. 211-224
    • Parsopoulos, K.E.1    Vrahatis, M.N.2
  • 20
    • 67349127659 scopus 로고    scopus 로고
    • Hybrid fuzzy set-based polynomial networks and their development with the aid of genetic optimization and information granulation
    • S.-K. Oh, W. Pedrycz, and S.-B. Roh Hybrid fuzzy set-based polynomial networks and their development with the aid of genetic optimization and information granulation Applied Soft Computing 9 3 2009 1068 1089
    • (2009) Applied Soft Computing , vol.9 , Issue.3 , pp. 1068-1089
    • Oh, S.-K.1    Pedrycz, W.2    Roh, S.-B.3
  • 30
    • 0036275180 scopus 로고    scopus 로고
    • An evolutionary artificial neural networks approach for breast cancer diagnosis
    • H.A. Abbass An evolutionary artificial neural networks approach for breast cancer diagnosis Artificial Intelligence in Medicine 25 3 2002 265 281
    • (2002) Artificial Intelligence in Medicine , vol.25 , Issue.3 , pp. 265-281
    • Abbass, H.A.1
  • 33
    • 33646500527 scopus 로고    scopus 로고
    • A novel radial basis function neural network for discriminant analysis
    • Z.R. Young A novel radial basis function neural network for discriminant analysis IEEE Transactions on Neural Networks 17 3 2006 604 612
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 604-612
    • Young, Z.R.1
  • 34
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty three old and new classification algorithms
    • T. Lim, W. Loh, and Y. Shih A comparison of prediction accuracy, complexity, and training time of thirty three old and new classification algorithms Machine Learning 40 2000 203 228
    • (2000) Machine Learning , vol.40 , pp. 203-228
    • Lim, T.1    Loh, W.2    Shih, Y.3
  • 35
    • 0012018345 scopus 로고
    • Department of Computer Science and Department of Mathematics and Statistics, James Cook. University of North Queensland, Technical Report 92-02
    • S. Aeberhard, D. Coomans, O. de Vel, Comparison of classifiers in high dimensional settings, Department of Computer Science and Department of Mathematics and Statistics, James Cook. University of North Queensland, Technical Report 92-02, 1992.
    • (1992) Comparison of Classifiers in High Dimensional Settings
    • Aeberhard, S.1    Coomans, D.2    De Vel, O.3
  • 36
    • 23844497473 scopus 로고    scopus 로고
    • Logitboost of simple Bayesian classifier
    • S.B. Kotsiantis, and P.E. Pintelas Logitboost of simple Bayesian classifier Informatica 29 2005 53 59
    • (2005) Informatica , vol.29 , pp. 53-59
    • Kotsiantis, S.B.1    Pintelas, P.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.